
AD-A284 343

29 January 1994

DTIC
ELECIL
SEE1PP 1 5 1994 ,

F

Training Plan
Central Archive for Reusable Defense Software
(CARDS)

Informal Technical Report

This documeat hc~s bloea appoved

tot pu .•ic zel-acjs cmd sale; its

disfribtiton is = mtd

4__. ' ____

Central Archive for Reusable Defense Software

STARS-VC-B003/001/00
29 January 1994

94-29916

94 9 14 068

CDRL: B003
29 Jamary 1994

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Training Plan

Central Archive for Reusable Defense Software
(CARDS)

STARS-VC-B003/0O1/00
29 January 1994

Contract NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:
Accesion For .Electronic Systems Center

Air Force Material Command, USAF NTIS CRA&

Hanscom AFB, MA 01731-2816 UiaInr ouced

Justification S.................... o.

Prepared by: By.......

AZ~mth, nc.Distribution !Azimuth, Inc.

and Avaii.biiity C'½c (.,

Electronic Warfare Associates, Inc. Avail ar'cj or

under contract to Dist Specia;

Urisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

Distribution Statement "A"
per Dod Directive 5230.24

Approved for public release, distribution is unlimited

a)RL: B003
29 Jamary 1994

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Training Plan
Central Archive for Reusable Defense Software

(CARDS)

STARS-VC-B003/001/00
29 January 1994

Contract NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:

Electronic Systems Center
Air Force Material Command, USAF

Hanscom AFB, MA 01731-2816

Prepared by:

Azimuth, Inc.
and

Electronic Warfare Associates, Inc.
under contract to

Unisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

ii

CDRL: B003
29 Jauary 1994

Data ID: STARS-VC-B003/001/00

Sribution Statenment "A"
Dod Directive 5230.24

Approved for public release, distribution is unlimited

Copyright 1993, Unisys Corporation, Reston Virginia and Azimuth, Inc.
Copyright is assigned to the U.S. Government, upon delivery thereto in accordance with the

DFARS Special Works Clause

Developed by: Azimuth, Inc. under contract to Electronic Warfare Associates, Inc.

This document, developed under the Software Tet.. ..,,y for Adaptable, Reliable Systems
(STARS) Program, is approved for release under Distri; Lon "A" of the Scientific and Techni-
cal Information Program Classification Schema (DoD Directi, z 5230.24) unless otherwise
indicated by the U.S. Advanced Research Projects Agency (ARPA) under contract
F19628-93-C-0130, the STARS Program is supported by the mibfary services with the U.S.
Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated under
Distribution "A" and without fee is hereby granted, providing that this notice appears in each
whole or partial copy. This document retains Contractor indemnification to the Government
regarding copyrights pursuant to the above referenced STARS contract. The Government dis-
claims all responsibility against liability, including costs and expenses for violation of property
rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Unisys, and its subcontractors disclaim all warranties with regard
to this document, including all implied warranties of merchantability and fitness, and in no
event shall the Government, Unisys, or its subcontractor(s) be liable for any special, indirect,
or consequential damages or any damages whatsoever resulting from the loss of use, data, or
profits, whether in action of the contract, negligence, or other totious action, arising in
connection with the use or perfomance of this document.

iii

CDRL: B003
29 Jamuay 1994

INFORMAL TECHNICAL REPORT
Training Plan
Central Archive for Reusable Defense Software
(CARDS)

Principal Author(s):

Kerrin Smith Date

Harry J. Facemire Date

Approvals:

System Architect: Kurt Wallnau Date

Program Manager: Lorraine Martin Date

(Signatures on File)

iv

CDRL: B003
29 Jamnay 1994

PREFACE

This document is an update of the original Training Plan. The original version was co-authored
by Kerrin Smith and Leslie Hayhurst. The documentation and courses developed and presented
by the CARDS team are updated periodically as new input is received and new developments
in technology occur. These changes and additions are reflected in this updated version of the
Training Plan.

Due to the similarity and overlapping of course content, the training course for DoD contractors
and the training course for DoD organizations have been combined into a single course
entitled Management Level Training Course. Appendix A is now an outline of a course
entitled Application Engineering with Domain-Specific Reuse. Appendix B is an outline of the
Introduction to Reuse course which was developed and presented by the CARDS team. As new
courses are developed and delivered to the Government, they will be added as appendices.

Appendices A, B, and C from the previous version have been incorporated into this version as
handouts in the present Appendix A and B. Other changes include minor style changes as well
as updates of the references and reading lists.

cDRL: B003
29 January 1994

ABSTRACT

The Central Archive for Reusable Defense Software (CARDS) Training Plan serves as a
comprehensive guide for creating training courses and training materials on domain-specific
reuse for Department of D)efense (DoD) organizations, DoD contractors, system engineers,
and university professors. The Training Plan provides guidance for conducting three different
domain-specific software reuse training courses for four different audiences. The intent of the
courses in the Training Plan is to demonstrate how software reuse can reduce development and
maintenance time and costs, reduce project risks, and increase productivity.

vi

0. SP0NSORING/MON~IDRING AGENCY NAME(S) AND ADDRESS(ES) Ill0. SPONSORING/MONI-
TORING AGENCY

Department of the Air Force IREPORT NUMBER
ESC/ENS
llanscom AFB, MA 01731-2916 jB003
LI. SUPPLEMENTARY NOTES

Us. DISTRIBUTION AVAILABILITY STATEMENT j12 b. DISTRIBUTION CODE

DISTRIBUTION "A"j

13. ABSTRACT (Maxinmum 200 words)

The Central Archive for Reusable Defense Software (CARDS) Tfraining Phan merves sm a comprehensive guide for crating training courses and training material. em
ionaain..peciflc retine for Department of Defense (DoD) organizations, Del) contractors, system engineers, and university profmowu. The Training Plan provides
guidance for conducting three different domain-spediftesoftware rnine training course. for four different audiences. The intent of the course. In the Training Plan ls
to demonstrate how software reusne can reduce development and maintenance tine and costs, reduce project raisk, and Increase productivity.

CDRL: B003
29 Jimay 1994

Table of Contents

1 INTRODUCTION---..... 1

1.1 PURPOSE nn................----.............................. 1
1.~2 RAT--NA-E.........................n..i........................... 1
1 .3 SCOPE..n.......n.....e.e.....................e.......... 1
1.4 DEVELOPMENT OF THE TRAINING PLAN 1................

1.4.1 Approach...................................

1.4.2 Identification of Courses ... I
1.4.3 Bibliography for Developing the Training Plan 2
1.4.4 Individual Course Information .. 3

2 MANAGEMENT LEVEL TRAINING COURSE 5

2.1 COURSE .AR.ACTERISICS 5
2.1.1 Rationale ... 5
2.1.2 Course Objectives .. 5
2.1.3 Audience Characterization 5
2.1.4 Course Completion Criteria 6
2.1.5 Student Readings 9

2.2 OUTLINE OF RECOMMENDED COURSE CONTENT9..............................9
2.2.1 Reuse as Part of the Solution
2.2.2 Introduction to Domain-Specific Reuse,......................... 12
2.2.3 Considerations When Integrating Reuse-...........................
2.2.4 Continuous Assessment and Improvement 20
2.2.5 Demonstration of Reuse Library.............nnnnnnnnn

2.3 TRAINING ISRCO 2
2.3.1 Job Description.... 2
2.3.2 Form al E u ai n..2
2.3-3 Knowledge of Isrcin....................... 2

2.3.4 Practical Teaching Experience23

2.3.5 Knowledge of --- -.. . .. 23
2.4 BIBLIOGRAPHY FOR DEVELOPING MANAGEMENT LEVEL TRAINING

COURSE CNET......... 2

3 TRAINING COURSE FOR SYSTEM AND SOFTWARE ENGINEERS 25

vii

CDRL: B003
29 Jamiary 1994

3.1 COURSE CHARACTERISTICS .. 25
3.1.1 Rationale .. 25
3.1.2 Course Objectives .. 25
3.1.3 Course Completion Criteria 25
3.1.4 Audience Characterization 25
3.1.5 Student Readings 26

3.2 OUTLINE OF COURSE CONTENT 27

3.2.1 Introduction and Rationale 27
3.2.2 Domain Analysis ... 31
3.2.3 Integration of Reuse Into System Development Processes
3.2.4 Summary .. 33
3.2.5 Lessons Learned .. 33

3.3 TRAINING INSTRUCTOR .. 34
3.3.1 Job Description ... 34
3.3.2 Formal Education ... 35
3.3.3 Knowledge of Instruction 35
3.3.4 Practical Teaching Experience 35
3.3.5 Knowledge of Subject .. 35

3.4 BIBLIOGRAPHY FOR DEVELOPING THE SYSTEM/SOFTWARE ENGINEERS
COURSE 35

4 TRAINING COURSE FOR UNIVERSITIES 39

4.1 COURSE CHARACTERISTICS ..-..-..-.-....... 39
4.1.1 Rationale .. 39
4.1.2 Course Objectives 39
4.1.3 Course Completion Criteria 39
4.1.4 Audience Characterization 39
4.1.5 Student Readings.. 40

4.2 OUTLINE OF COURSE CONTENT..40

4.2.1 Reuse as Part of the Solution 40

4.2.2 Introduction to Domain-Specific Reuse... 42
4.2.3 Reuse and the Software .. 43

4.2.4 Considerations When Integrating Reuse.. 44

42.5 Continuing Education/Research---46
4.2.6 Summary of C.46

4.3 TRAINING INSTRUCTOR .-...--..-............---.....................- 4 7

4.3.1 Job Description 47
4.3.2 Formal Education . 47

4.3.3 Knowledge of Instruction .. 4 7

4.3.4 Practical Teaching Experience.................................... .. 4 7

viii

CDRL: B003
29 Jamnary 1994

4.3.5 Knowledge of Subject _ ... 48

4.4 BIBLIOGRAPHY FOR DEVELOPING UNIVERSITY COURSE CONTENT 48

5 EXECUTING THE TRAINING PLAN .. 49

5.1 ONE COURSE AT A TIME 49
5.2 INTEGRATED .AKG-.... 49

5.3 TRAINING EXECUTOR..
5.4 TRAINING SUPERVISOR 50
5.5 TRAINING FACILITY 50
5.6 PRICE WORKSHEET................................... 1

Appendices

Appendix A Application Engineering with Domain Specific Reuse...... A - I

INTRODUCTION A- 1
PURPOSE ... A -I

CARDS PROGRAM MISSION A - 1
RELATIONSHIP TO OTHER CARDS DOCUMENTS......................A - I
DOCUMENT ORGANIZATION A - 2

STUDENT................... ... A - 2
STUDENT CHARACTERIZATIONA - 2

System Enge. .e.. A - 2
Software Engineers .. A - 3
Student Prerequisite Knowledge. A - 3

INSTRUCTOR A - 3
JOB DESCRIPTION -..................... A - 3
FORMAL EDUCATION ..-.. nnn.. A 4
KNOWLEDGE OF INSTRUCTION . - 4
PRACTICAL TEACHING EXPERIENCE A - 4
KNOWLEDGE OF SU-BJECT. .. A - 4
SKILL IN PEFRAC A- 4

COURSE OV.RVIEW .. A -4

COURSE B-----............ A - 4
COURSE COMPLETION CRITERIA. .. A - 6
COURSE TAILORING-..A - 6

DoD Personnel With No Reuse Experence -..................................A - 6
University Graduate Students------..................... A - 6

ANNOTATED COURSE O-ULINE A-7
UNIT 1 - INTRODUCTION AND RATIONALE A -7

ix

QDRL: B003
29 January 1994

Learning Objectives A - 7
Lecture Content Area ... A - 8

UNIT 2 - SOFTWARE REUSE CONCEPTS A - 13
Learning Objectives .. A - 13
Lecture Content Area ... A - 13

UNIT 3 - DOMAIN-SPECIFIC REUSE A - 19
Learning Objectives ... A - 19
Lecture Content Area .. A - 19

UNIT 4 - DOMAIN ANALYSIS OVERVIEW A - 24
Learning Objectives .. A - 24
Lecture Content Area A - 24

UNIT 5 - SOFTWARE REuE LIBRARIES .. A - 28
Learning Objectives ... A - 28
Lecture Content Area ... A - 29

UNIT 6 - APPLICATION ENGINEERING .. A - 32
Learning Objectives ... A - 32
Lecture Content ... A - 33

UNIT 7 - REUSE BARRIERS ... A - 37
Learning Objectives ... A - 37
Lecture Content Area A - 37

COURSE IMPLEMENTATION QUESTIONS AND ANSWERS A - 40
POSSIBLE kCTIVITY EXERCISES A - 41
HANDOUT - COURSE EVALUATION FORM A - 42
HANDOUT - GLOSSARY .. A - 45
HANDOUT-ACRONYMS A - 49
HANDOUT - BIBLIOGRAPHY A - 50

Appendix B Introduction to Reuse B - 1

INTRODUCTION B-1
PURPOSE B - 1
CARDS PROGRAM MISSION B - 1
RELATIONSHIP TO OTHER CARDS DOCUMENTS B - 1
DOCUMENT ORGANIZATION B - 2

STUDENT _..B - 2
STUDENT CHARACTERIZATION -.... B - 2

System Engineers B - 2
Software Engineer -.............................. B 3

STUDENT PREREQUISITE KNOWLEDGE B - 3
INSTRUCT7OR B - 3

JOB DESCRIPTION 3...B - 3

x

CDRL: B003
29 Janmmy 1994

FORMAL EDUCATION B - 3

KNOWLEDGE OF INSTRUCTION .. B - 4

PRACTICAL TEACHING EXPERIENCE .. B - 4

KNOWLEDGE OF SUBJECT B - 4

SKILL IN PERFORMANCE 4.......... 8-4
COURSE OVERVIEW B - 4

COURSE BREAKDOWNB 4

ANNOTATED COURSE OUTLINE B - 5

UNIT 1 - INTRODUCTION AND RATIONALE .. B - 5
Learning Objectives*.........*................. B 5

Lecture Content Area B - 5

UNIT 2 - SOFTWARE REUSE CONCEPTS B - 6

Learning Objectives B - 6
Lecture Content Area .. B - 6

UNIT 3 - DOMAIN-SPECIFIC REUSE B - 6

Learning Objectives B- 6

Lecture Content Area ... B - 7

UNIT 4 - SOFTWARE REUSE LIBRARIES ... B - 7

Learning Objectives ... B - 7
Lecture Content Area .. B - 7

HANDOUT - COURSE EVALUATION FORM .. B - 8

HANDOUT - GLOSSARY B - 10

HANDOUT - ACRONYMS .-.-.-.-... B - 14

HANDOUT- BIBLIOGRAPHY..... nnn..................... B - 15

xi

STARS-VC-BO03A)01/00 29 Jamay 1994

1 INTRODUCTION

1.1 PURPOSE

This Training Plan serves as a comprehensive guide for creating training courses and training
materials on domain-specific reuse for Department of Defense (DoD) organizations, DoD
contractors, system engineers, and university professors.

112 RATIONALE

A foundation for integrating software reuse into the business practices of DoD organizations and
contractors is necessary if the full potential of software reuse is to be realized. Education and
training is the foundation upon which new concepts are incorporated into existing processes.
Training and education guidelines must be in place to support the inclusion of reuse in the
software development process.

1.3 SCOPE

The Training Plan is a recommendation of how top quality domain-specific software reuse
training should be conducted. The Plan identifies the generic functions necessary to support
these recommendations. For instance, the Plan itself is detached from dollar figure amounts, but
a Price Worksheet (see Section 5.6) is provided from which these amounts may be derived.
Implementing individual courses will require omitting, adding, and/or modifying the plan's
recommendations and outlined course content for different audiences. These changes will
ultimately produce a tailored implementation of the plan each time a course is presented to
an audience.

The Training Plan provides guidance for conducting three different domain-specific software
reuse training courses for four different audiences. One of the courses, the Management Level
Training Course, is directed at both DoD and contractor management level personnel. This
course is intended to provide an understanding of the management infrastructure required to
support software reuse. The second course, the Training Course for System and Software
Engineers, has been developed to provide system/software engineers with an understanding of
how to incorporate software reuse into their current system/software development processes.
The third course, a Training Course for Universities, provides outlines on how to incorporate
software reuse into university curricula.

The intent of the courses in the Training Plan is to demonstrate how software reuse can reduce
development and maintenance time and costs over time, reduce project risks, and increase
productivity.

Page 1

STARS-VC-B003/0OIIVO 29 Januay 1994

1.4 DEVELOPMENT OF THE TRAINING PLAN

1.4.1 Approach

The purpose of the Training Plan is to specify the approaches to be used in training DoD
contractors, university students and professors, and DoD organization persormel in domain-
specific reuse. The Training Plan contains outlines (identifying content, methods, and duration)
of curriculum contents for each of the target audiences. This approach allows for a wide audience
characterization, and contains a tremendous amount of information. From these course outlines
contained in the Training Plan, CARDS used a format from DISA to prepare course materials
to enhance the exchangeability of the courses among DoD efforts.

1.4.2 Identification of Courses

In developing the three course outlines, careful consideration was given to the composition of the
intended audiences, and how domain-specific reuse impacts their respective functions. The four
audiences identified are: management in DoD organizations, management in DoD contractors,
system/software engineers, and university professors and administrators.

The common business processes that establish a working relationship between DoD organizations
and DoD contractors were identified to assist in depicting the specific content areas for each of
the DoD courses. These processes include developing acquisition plans, requests for proposals
(RFPs), statements of work (SOWs), and proposals.

Introducing new technology, such as reuse, may require both managerial and implementation
changes throughout all of these business processes. The DoD Organization is identified as
initiating the acquisition plans and the RFPs in this working relationship. The DoD Contractor
is identified as responding to the DoD Organization's RFP with an appropriate proposal.

The course for DoD organizations and DoD contractors is structured to provide management level
personnel with an understanding of reuse and to characterize potential solutions for integrating
domain-specific reuse into their particular business practices. The key issue in the modification of
the course for these organizations is the focus on their respective views of the business processes
and what their individual responsibilities are in making reuse work.

To further refine the content of each course, a distinction was made between managerial
related issues and their actual implementation at the technical level. The System/Software
Engineer's course was organized to address the technical implementation of reuse. This course
is independent of DoD Organization and DoD Contractor distinguishing characteristics at the
technical level. Consequently, the course is designed to be applicable to both DoD organizations
and DoD contractors.

The System/Software Engineer's course objective is to provide a basis for integrating domain-
specific reuse into current system/software engineering practices and to explore how the

system/software engineer can use domain analysis products.

Paop 2

STARS-VC-BO0301/00 29 Jamry 1994

The third course addressed by this Plan is targeted toward university professors. The main
objective of this course is to provide an understanding of software reuse and to identify potential
avenues for integrating domain-specific reuse into their courses and curriculum.

1.4.3 Bibliography for Developing the Training Plan

1. Bacon, T. R., and Frierman, L. H. Shipley Associates Style Guide, 1990.

2. Bugelski, B. R. The Psychology of Learning Applied to Teaching. Bobbs-Menrill

Company, 1964.

3. Computer Maintenance Training Manual. NSA, M-5099, 1 Oct 1967.

4. Computer Program Training Plan. Navy-AS, UDI-H-21262, AIR-533, 7 Sep 1973.

5. Dwyer, F. M. Strategies for Improving Visual Learning. Learning Services, 1978.

6. How to Prepare and Conduct Military Training. FM 21-6. HQ, Department of the
Army, Nov 1975.

7. Proposed Curricula for Librarians Course. Asset Source for Software Engineering
Technology (ASSET), National Software Technology Repository.

8. STARS Reuse Concept of Operation. Task US30: Vol. I Ver. 0.5 - DRAFT
STARS-SC-03725/001/00, 27 Aug 1991.

9. Steinger, L. The Career Development Program for Acquisition Personnel. DoD
Report 5000.52-M, 15 Nov 1991.

10. Student and Training Course Evaluation Forms. CDRL Item A028, Contract
F19630-88-D-0004.

11. Student's Training Course Guide. DoD, DI-H-7071, NAVAIE 04B1, 8 Feb 1981.

12. Student Training Materials. NTEC, DI-H-25724B, NAVTRAEQUIPCEN Code
N-25, 30 Jun 1986.

13. Tomayko, J. E. Software Configuration Management. SEI Curriculum Module
SEI-CM-4-1.3 (Preliminary), Jul 1987.

14. Training and Equipment Plan. DoD, DI-H-7066, NAVAIR 041B, 18 Feb 1981.

15. Training Development and Support Plan. F/AFSPACECOM-1013 CCTS,
DI-MGMT-80476, 26 Aug 1987.

Page 3

STARS-VC-B003V01/00 29 Jamuy 1994

16. Warriner's English Grammar and Composition, Fifth Course. New York: Harcourt
Brace Jovanovich, 1982.

1.4.4 Individual Course Information

For each of the three training courses, the Plan includes a section on course characteristics,
an outline of the course content, recommended instructor qualifications, and references used to
develop the course.

The sections on course characteristics provide a course overview (including a rationale for

conducting the training), the course objectives, the course's completion criteria, an audience
characterization, and a student reading list for their respective courses.

The instructor should use the student reading list to develop suggested prerequisite readings,
course texts, and supplemental readings. The supplemental reading list should provide students
with a collection of documents that will be useful in advancing their understanding of domain-
specific reuse beyond the information covered in the course.

Pa 4

STARS-VC-BO03/001/00 29 Jmnary 1994

2 MANAGEMENT LEVEL TRAINING COURSE

Reuse of software system components is being promoted as supporting a focus toward more cost-
effective and timely development of software-intensive systems. Domain-specific reuse provides
a framework and method to effectively reuse common domain components. The purpose of
this course is to provide management-level DoD organizations and contractor personnel with an
understanding of the benefits of reuse and what is required to support the integration of domain-
specific reuse into the management processes.

2.1 COURSE CHARACTERISTICS

2.1.1 Rationale

Reuse is a long term investment and without ongoing support and incentives, reuse programs
will not be successful. Inadequate training and materials exist for director-level, mid-level, and
team leader personnel in Government, industry, and academia in the areas of how and why to
implement software reuse, and how to address perceived and real barriers to effective software
reuse.

2.1.2 Course Objectives

The learning objective for this course is to provide management level personnel with:

"* an understanding of the benefits of reuse;

"* an understanding of the background of reuse and domain-specific reuse;

"* an understanding of the responsibilities involved in providing a reuse infrastructure;

"* an understanding of how reuse may impact writing acquisition plans, RFPs and
SOWs, and evaluating submitted proposals;

"* the ability to respond to RFPs with proposals that incorporate reuse;

"* an understanding of the methods for integrating domain-specific reuse into current

business practices;

"* an understanding of how to integrate reuse.

2.1.3 Audience Characterization

One of CARDS' many goals is to identify and outline the education and training necessary
for each audience to make widespread reuse a reality. To do this, CARDS must determine

Page 5

STARS-VC-BO03OI.)00 29 Jammy 1994

our audience and the level of their capacity towards reuse utilization and/or implementation.
CARDS defines four levels of functionality:

Level I. Vice Presidents

Direction Level Managers

Program Executive Officers

Designated Acquisition Commanders

University Department Heads

Level UI. Mid-level Managers

Program Manager

University Professors

Level iM. Unit Managers

Project Leaders

Team Leaders

University Instructors

Level IV. Individual Contributors

Implementation Engineers

University Students

The intended audience for this training course is personnel at level I and level 2. The primary
responsibility of these personnel is strategic management of their business, especially direction-
level managers and program managers.

Direction-level managers are those responsible for implementing cross-program infrastructure
change and instituting policy change in marketing practices and/or system development methods.
They are also responsible for instantiating top-level policy guidance and change, managing
program costs, and instituting policy change in procurement practices and/or system development
methods. Direction-level managers also possess interests in domain-specific reuse, management
level awareness of technology, cost and benefit issues, and long term benefits. They also possess
an awareness of their application domain.

Program managers are responsible for planning and executing acquisition programs, and
instantiating program level policy guidance/change. They are also responsible for risk
assessment, analysis, and mitigation. Program managers possess an interest in domain-specific

Pop 6

STARS-VC-BO03/001/0 29 Jammy 1994

reuse, knowledge of basic system acquisition, knowledge about general software development
issues and management level awareness of technology. They also possess an awareness of cost,
scheduling, and requirements.

2.1.4 Course Completion Criteria

Participants will apply concepts and techniques identified by the course's content areas, producing
products as proof of completing the training course. Upon completion of the training course the
participants will be able to:

"* identify areas within their organizations that should support reuse;

"* outline specific procedures for implementing reuse;

"* develop plans for identifying applicable domain areas and reuse infrastructures
within their business area;

"* incorporate reuse concepts into RFPs and SOWs;

"* define an appropriate organizational structure to support reuse;

"* identify strategies for incorporating reuse into proposals;

"* develop reuse-oriented evaluation criteria in relation to RFPs and SOWs.

Upon completion of the Training Course, the participants will have been instilled with certain
attributes and abilities which are listed with their respective levels.

Level I. Vice Presidents:

Commitment to Reuse,

Knowledge of Reuse,

Allocate resources to establish Reuse,

Provide vision and strategies concerning:

Environment framework,

Metrics, and

Incentives,

Continued Involvement.

Level KI Mid-level Managers:

Pap 7

STARS-VC-B003I001/00 29 JaIy 1994

Commitment to Reuse,

Knowledge of Reuse,

Identification and allocation of resources,

Implementation plan for vision and strategies concerning:

Environmental Framework,

Personnel,

Tools,

Processes,

Metrics, and

Incentives,

Continuing Involvement, and

Management boundaries-interface with external resources.

Level III. Unit Managers:

Implement Plan in the form of:

Processes (collect/analyze),

Metrics, and

Incentives.

Commitment to Reuse,

Employ resources,

Continued Involvement,

Reusing,

Management of boundaries - interface with external resources, and

Lessons Learned.

Level IV Individual Contributors:

Commitment to Reuse,

Pap8

STARS-VC-BO03A)OD)O0 29 Janmy 1994

Knowledge of Reuse,

Rationale for Reuse,

Continuous Improvement,

Reusing, and

Lessons Learned.

2.1.5 Student Readings

1. Acquisition Handbook, Central Archive for Reusable Defense Software (CARDS),
STARS-AC-04105/001/00, 30 Apr 93.

2. Arnold, R. S., Frakes, W., and Prieto-Diaz, R. Software Reuse, Domain Analysis,
and Reengineering. Conference Notes, 6-8 Apr 1992.

3. Direction Level Handbook, Central Archive for Reusable Defense Software
(CARDS), STARS-AC-04104/001/00, 20 Nov 92.

4. STARS Reuse Concepts, Volume 1, Conceptual Framework for Reuse Processes
(CFRP), Version 2, STARS-UC-05159/001/00, 13 Nov 92.

5. Williams, A. SWAN-An Ada Program for Cost Estimation. AdaIC Newsletter, Sep
1991.

6. Wong, W. A Management Overview of Software Reuse. NBS Special Publication
500-142, Washington, DC: USGPO, Sep 1983.

2.2 OUTLINE OF RECOMMENDED COURSE CONTENT

The following is an outline of the recommend course content.

2.2.1 Reuse as Part of the Solution

A. The Dilemma:

1. Software industry;

a. Increasing software costs,

b. Increasing complexity of software,

Pep 9

STARS-VCB3003/001/00 29]=my 1994

c. Increasing development time,

d. Shortage of experienced personnel,

e. Degradation of quality,

f. Software as a commodity,

g. Software as a utility.

2. Customer;

a. Demand for high quality products,

b. Demand for low risk products,

c. Demand for automated programming support,

d. Demand for customized software packages,

e. Demand for flexible products,

f. Demand for faster product delivery.

B. A Solution:

1. What is Reuse?

a. The process of incorporating into the life-cycle of a software system any
preexisting components (e.g., requirements, design, code, executables).

b. Examples.

2. Why Reuse?

a. Reduces schedule,

b. Increases productivity;

Improves programming capabilities,

Reduces the amount of documentation and testing.

c. Increases quality;

PW 10

STARS-VC-BO03=)01/00 29 Jmauy 1994

Software is well designed (for reuse),

Software is well documented (standard),

Software is well tested (certified),

Software is well understood (functionality),

Concepts are manifested in rapid prototyping.

d. Increases reliability,

e. Reduces maintenance costs,

f. Overall, reuse allows for more system development within the same time
frame,

g. Reduces long term development costs,

h. Increases flexibility,

i. Improves competitive posturing.

3. Evolution of Reuse;

a. Early reuse projects,

b. Reuse success stories,

c. Current approaches and concepts:

Components and wide spectrum reuse,

Composition versus generation,

Design for reuse,

Design with reuse,

Life-cycle importance of reuse,

Architecture driven,

Domain-specific reuse.

Page 11

STARS-VC-B003J•1/00 29 Juary 1994

d. Reuse is NOT:

A cure all,

Object oriented design,

A specific technology.

2.2.2 Introduction to Domain-Specific Reuse

A. What is a Domain?

1. A domain is a set of common capabilities and data constituting a set of current
and future systems in a particular application area, such as:

a. A business area,

b. A software business area,

c. A software intensive application area,

d. An application area for which similar software systems have been built-

2. Examples.

B. What is Domain-Specific Reuse?

1. Reuse of ideas, knowledge, artifacts, personnel, and components in an existing
domain.

2. Examples.

C. What is Architecture-Centric Reuse?

D. What is Process-Driven Reuse?

E. What is Library-Assisted Reuse?

F. Why Domain-Specific Reuse?

1. Reuse is more effective in a narrow, well defined domain where similar systems
are built.

2. Examples.

pop 12

STARS-VC-B003A001/00 29 Jamary 1994

G. Domain Selection Checklist.

1. Define strategy.

2. Select domain analysis resources.

3. Identify boundaries/scope of domain.

4. Select mature, stable, well-defined domain.

5. Define predictable technology.

6. Perform market evaluation.

7. Identify available domain expertise.

S. Conduct readiness cost and benefit analysis.

H. Existing Technological Support.

1. STARS efforts,

2. CARDS,

3. PRISM,

4. DISA (DSRS),

5. RAASP,

6. Others.

2.2.3 Considerations When Integrating Reuse

A. Strategic Planning:

1. Return on Investment Analysis:

An organization must consider the costs and benefits of implementing reuse.

Some of the questions• that can be asked are:

a. What investment does reuse require?

b. Is a reuse program economically feasible?

Pap 13

STARS-VC-BO03/001/ 29 Jauwy 1994

c. What are the alternatives to a reuse program?

d. What alternatives exist for implementing a reuse program (technical support)?

e. What is the scope of the reuse program?

f. At what organizational level is the program targeted?

g. Some of the existing software cost models that incorporate reuse are:

SPC,

Reuse COCOMO,

IDA/STARS,

REVIC.

2. Feasibility Analysis:

An organization must decide if it is feasible to incorporate reuse into their
current business practices. Some of the questions that can be asked to decide
this strategic factor are:

a. How many similar systems will be built?

b. Is reuse beneficial?

c. Does the organization want to incorporate reuse?

d. Does the organization have the resources?

e. Is management committed?

f. Are implementation variations small or large?

g. Is existing software already available for reuse?

h. Is software production large enough to justify a reuse program?

i. Is a phased approach feasible?

j. Will the organization be more attractive to potential customers if reuse is
incorporated?

Ps~p 14

sTARS-VC-BOMq/0•01o 29 J y 1994

k. Will the organization be more competitive if reuse is incorporated?

1. How well is the organization structured to support reuse?

m. What is the potential impact on business models?

3. Setting Goals and Objectives:

a. Establish a vision and strategy for achieving reuse for one organization.

b. Select a life-cycle process model for reuse based development.

c. Set specific reuse goals and objectives; define associated metrics.

d. Include both management and engineering processes, assume iterative
planning, continuous process improvements.

4. Domain Suitability:

An organization must determine if its current operational domain is suitable
for reuse. The following are some of the questions to help answer this issue:

a. Is the domain broad or narrow?

b. Is the domain mature and well understood?

c. Is the domain stable or changing continually?

d. Is the domain based on well established principles, methods, and formalisms?

5. Legai/Acquisition Issues:

a. Artifacts reused:

Domain model,

Software architecture,

Product design,

Implementation components.

b. Issues:

Ownership/CopyrightVProprietary issues,

Par 15

STARS-VC-3003JO01/00 29 Jmawy 1994

Liabilities and responsibilities,

Contractual requirements,

Derivative works.

B. Implementation Planning:

1. Supports long-term commitment to reuse,

a. Develop implementation plan.

2. Strong Management Involvement,

3. Characteristics of a Reuse Infrastructure:

a. Stable: the same structure supports all stages of the same program.

b. Flexible: the roles and people can be changed without affecting function.

c. Evolving: reuse may start with a minimum set of one person in multiple

roles and evolve into multiple teams with specific roles.

d. Practical: a reuser can actually practice reuse.

e. Effective: to the extent that all the elements of the infrastructure are efficient.

f. Economical: cost, complexity, and sophistication are adjustable to available
budget.

4. Develop Investment Strategy:

a. Infrastructure Alternative Resources:

Hire experienced reuse personnel,

Hardware/Software purchases,

Obtaining and testing components,

Developing components.

b. Education/training programs:

Pqp 16

grARS-VC-BOO31001/00 29 Jauuy 1994

Management level,

Technical.

c. Setting up a reuse infrastructure:

Developing a domain model,

Developing an architectural model,

Developing a library model,

Building and maintaining a library.

d. Supporting the reuse infrastructure (library/technical) support.

5. Allow Time for Transition:

a. Phased implementation,

b. Iterative implementation.

6. Provide Continuous Financial Support:

a. Resources,

b. Education/training,

c. Library/technical,

d. Monitor reuse community,

e. Long-term investment.

7. Establish, Monitor and Improve Incentive Programs:

a. Individual,

b. Corporate,

c. Monetary,

d. Other appropriate rewards.

Pago 17

STARS-VC-B03/001/00 29 J•uuy 1994

8. Develop Accommodating Business and Original Equipment Manufacturer
(OEM) Practices:

a. Reusable Software Acquisition Factors:

Identify effects on current acquisition and/or OEM policies,

Incorporate reuse into existing acquisition and/or OEM policies,

Introduce reusable software acquisition and/or OEM guide books and
handbooks.

b. Developing RFPs which incorporate Reuse:

Locating and evaluating components including domain models and
architectural models,

Listing applicable Government reuse libraries,

Listing COTS/GOTS products,

Encourage continuous identification of additional library products,

Identify status of software rights,

Criteria for award based on reuse.

c. Developing SOWs which incorporate Reuse:

Management related tasks regarding subcontracting software,

Impact life-cycle development,

Document contract/legal issues,

Identify reuse libraries,

Define personnel requirements.

d. Evaluating RFPs which specify reuse:

Identifying applicable Government reuse libraries,

Locating COTS products,

Pop 8s

STARS-VC-BOO3MUOW 29 Juamuy 1994

Identifying additional library products,

Identifying status of software rights,

Understanding criteria for award based on reuse.

e. Evaluating SOWs which require reuse:

Understand management related tasks regarding subcontracting software,

Impact on life-cycle development,

Evaluate contract/legal issues,

Identify reuse libraries,

Evaluate personnel requirements.

f. Developing Proposals incorporating reuse:

Requirements,

Specifications,

Additional expected costs,

Added benefits,

Risk reduction,

Indication of technical expertise in approach,

Proposal evaluation criteria.

g. Evaluating Proposals involving reuse:

Requirements,

Specifications,

Additional expected costs,

Added benefits,

Pap 19

SrARS-VC-B43003A001u 29 Jamry 1994

Risk reduction,

Indication of technical expertise in approach,

Proposal evaluation criteria.

9. Establish a Reuse Measurement Plan:

a. Management measurement,

b. Technical measurement,

c. Support incentives and objectives.

10. Management of Change:

a. Social/cultural biases,

b. Confusion with new technology,

c. Loss of experienced personnel,

d. Team effort required.

I I. Sustaining Reuse in Your Organization:

a. Incrementally staged,

b. Formal programs,

c. Systematic approach and evaluation,

C. Current technology issues.

2.4 Continuous Assessment and Improvement

A. Monitor external reuse issues:

1. Monitor and adjust reuse implementations,

2. Monitor external reuse communication and incorporate state of the art
technology,

3. Monitor and adjust ongoing reuse activities, metrics, progress toward goals,

Pig 20

STARS-VC-DOO03/01/00 29 Jmmay 1994

4. Pro-active systematic organization sensing,

5. Continuing advertisement to the organization/internal marketing:

a. Allow awareness,

b. Give feedback.

B. Lessons Learned:

1. Points Confirmed:

a. Reuse program changes the software development process,

b. Technology is important, but not essential,

c. Reuse is more effective in narrow, well defined domains,

d. Infrastructure support is essential,

e. Classification is instrumental in domain understanding,

f. Reuse is financially successful.

2. Factors Which Contribute to Failure:

a. Lack of management involvement,

b. No incentives,

c. No procedures,

d. Not enough information in library component catalog,

e. Poor classification,

f. No automated library,

g. Original parts not designed for reuse.

2.2.5 Demonstration of Reuse Library

A. Connecting to the Library,

Paop 21

STA-RVC-BOO3A)lAO/ 29 Jimuy 1994

B. Log-in procedures,

C. Component selection and retrieval mechanisms,

D. Prototyping,

E. Log-out procedures.

2.3 TRAINING INSTRUCTOR

This section outlines the responsibilities and desired qualifications of the training instructor for the
Management Level Training Course. These optimum qualifications are only recommendations;

they describe the best candidate for this position. In the event that it is not possible to locate an

individual who meets all of the detailed qualifications, some of the qualifications may be relaxed.

2.3.1 Job Description

The training instructor is responsible for conducting a tailored implementation of the recom-
mended course content through a lecture/workshop format. This is accomplished by completing
the following tasks:

"* consulting the documents listed in Section 2.4, Bibliography, for developing course

content;

" identifying specific implementor-related actions for reuse integration; updating and
tailoring the recommended outline of course content with respect to management
level personnel;

"* preparing appropriate training materials;

"* estimating the duration of the training session based on a blend of optimum

cost-effectiveness and covering the course content thoroughly;

"* conducting the training session;

"* seeing that the atmosphere of the training session is informal and relaxing,

intellectually stimulating, and learner-centered;

"* integrating lecture, discussion, and small working groups into the training session;

"* leading the course completion criteria workshop; and

"* providing an evaluation of the course completion criteria.

Popa 22

STARS.VC-03,W0MI/0 29 Jmma y 1994

2.3.2 Formal Education

The instructor should hold at least a BS degree in business administration (an MS degree is
preferred) and a degree in computer science, system engineering, or a closely related field.

2.3.3 Knowledge of Instruction

The instructor should possess an understanding of the principles of learning, the methods of
teaching, an ability to apply these principles and methods, and excellent communication skills.

2.3.4 Practical Teaching Experience

The instructor should possess teaching experience (at least two years) in planning short courses
and seminars, and in addressing management level personnel.

2.3.5 Knowledge of Subject

The Instructor should possess:

"* experience in the DoD's contractual and management processes;

"* knowledge and an understanding of the impact of integrating reuse;

"* experience in DoD procurement practices, including specific experience in writing
RFPs and SOWs, and evaluating proposals;

"• work experience at the DoD organization management level;

"* practical experience in reuse library operations; and

" work experience in software development.

2.4 BIBLIOGRAPHY FOR DEVELOPING MANAGEMENT LEVEL TRAINING
COURSE CONTENT

The training instructor should consult the following documents to prepare the tailored
implementation of the course content and the training materials.

1. Acquisition Handbook, Central Archive for Reusable Defense Software (CARDS),
STARS-AC-04105/001/00, 30 Apr 93.

Paqe 23

SIARS-VC-B003)1A00 29iamay 1994

2. Arnold, R. S., Frakes, W., and Prieto-Diaz, R. Software Reuse, Domain Analysis,
and Reengineering. Conference Notes, 6-8 Apr 1992.

3. Direction Level Handbook, Central Archive for Reusable Defense Software
(CARDS), STARS-AC-04104/001/00, 20 Nov 92.

4. Matsumoto, Y. Some Experience in Promoting Reusable Software: Presentation in
Higher Abstract Levels. IEEE Transaction on Software Engineering, Vol. SE-10
No. 5, Sep 1984.

5. Tracz, W. Ada Reusability Efforts: A Survey of the State of the Practice. Proceed-
ings of the Joint Ada Conference, Fifth National Conference on Ada Technology
and Washington Ada Symposium, US Army Communications-Electronics
Command, Fort Monmouth, New Jersey.

6. Williams, A. SWAN - An Ada Program for Cost Estimation. Ad&IC Newsletter, Sep
1991.

7. DoD Software Reuse Vision and Strategy Document, 15 July, 1992.

Pope 24

STARS-VC-BO03/001/00 29 Jaianmay 1994

3 TRAINING COURSE FOR SYSTEM AND SOFTWARE ENGINEERS

The purpose of this course is to provide system and software engineers with an introduction to
system development with domain-specific software reuse. The course introduces the methods
necessary to integrate domain-specific software reuse concepts into current system and software
development processes by emphasizing domain analysis, generic architecture development,
instantiation of the generic architecture, and system composition. An outline of the course
description is provided in Appendix A.

3.1 COURSE CHARACTERISTICS

3.1.1 Rationale

This course provides the basis for incorporating domain-specific reuse into system and software
development processes. This course introduces the methods necessary to integrate domain-
specific reuse concepts into current system and software development processes by providing an
overview of domain engineering and detailed guidance on application engineering. The course
is intended for use in both Government and industry training and can be tailored for presentation
at the university level.

3.1.2 Course Objectives

The course objectives are: to provide a basis for integrating domain-specific reuse into current
system and software engineering practices, and to explain how the system/software engineer
can use domain analysis products for the modeling, simulation, and prototyping of a system.
Although it is necessary to cover domain analysis techniques, the emphasis of this course is in
the use of domain analysis products to support domain-specific reuse in application development.

3.1.3 Course Completion Criteria

When the course is presented using all the units identified above, the following products will be
produced as proof of course participation:

"* A context model for a simple domain,

"* A domain model for a simple domain,

"* A system architecture from a generic architecture provided by the instructor,

"* A system prototype using a domain-specific software reuse library.

Paoe 25

STARS-VC-B003/0O1/00 29 Jamay 1994

3.1.4 Audience Characterization

This course is intended for experienced system and software engineers.

System engineers are concerned with the decomposition of systems, the allocation of software
development responsibility for specific system components to software engineers, and with the
subsequent composition of software and hardware system components to produce the final sys-
tem.

System engineers begin with customer-defined goals, requirements and constraints and derive a
representation of function, performance, interfaces, design constraints, and information structwue
that can be allocated to each of the generic system elements.

To accommodate function and performance, defined during system engineering, software
engineers must build or acquire a set of software components. The software engineer is
responsible for analyzing software requirements, developing or identifying existing software
designs and software components, and integrating, testing, and maintaining software components.

3.1.5 Student Readings

L. Arango, G. and Prieto-Diaz, R. Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, lvlzy 1991.

2. Biggerstaff, T., Perlis, A. J., Software Reusability, Volume I, Concepts and Models,
ACM.

3. Cohen, S., Stanley, J., Peterson, A., Krut, R., Application of Feature Oriented Do-
main Analysis to Army Movement Control Domain, Software Engineering Institute,
(SEI), CMU/SEI-91-TR-28, 30 Sep 1991.

4. Cohen, S., Software Reuse Technology: Feature-Oriented Domain Analysis. SEI
Tutorial slides, Mar 1992.

5. Component Provider's & Tool Venders Handbook, Central Archive for Reusable
Defense Software (CARDS), STARS-AC-041 1I/01/00, 15 Mar 1993.

6. DoD Domain Analysis Guidelines, DoD Software Reuse Initiative, Defense Informa-
tion Systems Agency (DISA) Center for Information Management (CIM), May
1992.

7. Engineers Handbook, Central Archive for Reusable Defense Software (CARDS),
STARS-AC-04112/001/00, 12 Feb 1993.

8. Frakes, W. B., Gandel, P. B., Representing Reusable Software, Information and
Software Technology, Vol. 32, No. 10, Dec 1990.

Pap 26

STARS-VC-BOO3/001/00 29 Jaruary 1994

9. Frakes, W., Prieto-Diaz, R., Arnold, R., Software Reuse, Domain Analysis, and
Reengineering, 1992.

10. Hess, J., Novak, W., Carroll, P., Cohen, S., Holibaugh, R., Kang, K., Peterson, A.,
A Domain Analysis Bibliography, Software Engineering Institute (SEI),
CMU/SEI-90-SR-3, June 1990.

11. Holibaugh, R., Joint Integrated Avionics Working Group (JIAWG) Domain
Analysis Concepts, 0' Dec 1989.

12. Pressman, R. S. Software Engineering: A Practitioner's Approach. McGraw-Hill,
1992.

13. Prieto-Diaz, R., Domain Analysis: An Introduction, ACM SigSoft, Software
Engineering Notes, Vol. 15, No. 2, April 1990

14. Technical Concepts Document. Central Archive for Reusable Defense Software
(CARDS), STARS-AC-04107A/001/00, 26 Feb 93.

15. Tracz, W. Software Reuse - Emerging Technology. IEEE Computer Society
Press, Sep 1985.

16. Wartik, S., Prieto-Diaz, R., Criteria for Comparing Reuse-Oriented Domain
Analysis Approaches, Software Productivity Consortium, 1991.

17. Withey, J., Model-Based Engineering. SEI Tutorial slides, Mar 1992.

18. Yourdon, E. Modem Structured Analysis. Yourdon Press Computing Series,
Prentice-Hall, 1989.

19. Yourdon, E. Decline and Fall of tt.e American Programmer, Yourdon Press, 1992.

3.2 OUTLINE OF COURSE CONTENT

3.2.1 Introduction and Rationale

A. DoD Software Reuse Vision and Strategy Overview

1. Considerations:

a. The objective is systematic (planned), not opportunistic reuse,

b. There is no single approach to software reuse,

Pag 27

STARS-VC-BO03,O•1,00 29 Jammy 1994

c. Librarie3 facilitate but do not enable reuse,

d. Reuse is a process, not an end-product,

e. Domain analysis/models/architectures are the primary focus,

f. Near term cost savings will be offset by infrastructure investments,

g. Ada provides a foundation upon which to base reuse efforts.

2. The Vision:

a. Process-Driven,

b. Domain-Specific,

c. Architecture-Centric,

d. Library-Assisted.

3. The Strategy:

a. Specify domains where reuse opportunities exist,

b. Define reusable products and develop evaluation criteria,

c. Determine ownership criteria of reusable products,

d. Modify the current acquisition process, and integrate reuse into every phase
of the system/software life-cycle,

e. Define models which support reuse, to include business decision models,
domain models and domain software architectures,

f. Establish metrics collection procedures through which program management

can gauge reuse success,

g. Define components standards,

h. Pursue a technology-based investment strategy which identifies, tracks, and
transitions appropriate reuse-oriented process and product technologies,

i. Conduct comprehensive training of management and technical personnel.

Pap 28

STARS-VC-BCOM001J0 29 Jmuary 1994

j. Exploit near-term products and services which facilitate movement to a
reuse-based paradigm.

4. Overall Risk is Reduced.

a. Greater uncertainty exists in the costs associated with developing a new
component.

b. There is an initial investment associated with reusing an existing component.

B. CARDS Overview

1. Program Goals:

a. Produce, document, and propagate techniques to enable domain-specific reuse
throughout the DoD,

b. Develop a Franchise Plan which provides a process for planning
domain-specific, library-assisted reuse throughout the DoD,

c. Implement the Franchise Plan with selected users and/or provide a tailored

set of services to support reuse,

d. Develop and operate a domain-specific library system and necessary tools.

2. Design with Reuse.

a. Incorporate available reusable assets into system analysis and design.

3. Entry-points of Life-cycle Artifacts.

a. It is important to stress that reusable components include all life-cycle
artifacts such as requirements, design, code, and test suites.

C. Evolution of Domain-Specific Software Reuse

1. Domain-specific Software Reuse.

a. A higher return on reuse is realized when requirements are reused rather than
just code. The instructor will introduce the student to the concept of domain
product reuse. The instructor needs to explain the basic concepts and advan-
tages of domain-specific reuse. This is just a top-level introduction; the
detailed presentation follows.

Page 29

STARS-VC-B00301/00 29 Jmuay 1994

2. Pioneering Software Reuse Projects:

a. CAMP,

b. Raytheon Missile Systems Division,

c. GTEDS Asset Management Program.

D. Payoffs of Domain-Specific Software Reuse:

Comparison of building a system architecture from scratch as opposed to building
it using domain-specific assets

1. Decrease system development time,

2. Increase productivity,

3. Increase quality,

4. Increase maintainability,

5. Increase job performance.

E. Software Reuse Libraries

I. Library as a Reuse Tool,

The instructor will introduce the reuse library as a tool, not as the reuse
solution.

2. Reuse Library Representations,

The instructor will introduce a brief overview of various methods (e.g., Dewey
decimal, semantics, faceted, indexed, and keywords).

3. Search and Retrieval Methods,

The instructor will have the students consider full text searching, facet
searching, keyword searching, knowledge-based searching, and browsing.

4. Available Libraries:

The instructor will provide the students with an overview of several different
types of libraries and the purpose each serves the reuse community.

a. CARDS,

Pop30

9rARS-TcjVC.,Xj0000 29 Ja"my 1994

b. ASSET,

c. DSRS,

d. AdaNET,

e. COSMIC,

f. ASR,

g. Others.

3.2.2 Domain Analysis

The teaching of domain analysis will be complete enough to instill an awareness of domain
analysis techniques and their role in systematic software reuse. This section will also build a
trust in the products produced by the domain analysis process.

A. Domain Modeling Methodologies:

Most domain modeling methodologies formulate similar models and viewpoints
of the domain. These models can often include feature models, functional models,
object models, and composition rules. Some of the common modeling techniques
used are entity-relationship models, state diagrams, hierarchical models and other
structured analysis design techniques. The instructor will review several common
structured analysis and modeling techniques. A brief overview of several domain
modeling methodologies will be presented.

B. Domain Identification:

It is necessary to choose the right domains to analyze. A domain must be stable,
well understood and somewhat static to be a good candidate for domain analysis.
A discussion and an illustration of how a domain is chosen will occur.

C. Domain Context Analysis:

The boundaries of the domain must be properly scoped. This process places the
domain relative to other domains. This process also defines the external entities
and data flows between the external entities and the domain.

Lab: The instructor will provide the students with the name and a brief description
of a domain. The students will create a context diagram of the domain specified.

D. Domain Modeling:

The domain model captures the common parts of the domain along with the
differences. The data commonality and the control flow for the functionality is

Pops 31

STARS-VC-BO003)01/00 29 Jamary 1994

captured in a functional model. This functional model is then used to generate
the requirements for a generic architecture and the reusable components.

Lab: The students will create a functional model of the domain specified by the
instructor.

E. Domain Analysis Products:

Using the models, composition rules, and taxonomy generated by domain analysis,
a generic architecture is developed. The generic architecture provides interface
.pecification among the components of the domain model. In developing the

generic architecture, software constraints, hardware constraints, performance
constraints and general design constraints are all considered. The student must
understand the structure of the generic architecture in order to use it.

3.2.3 Integration of Reuse Into System Development Processes

To achieve reuse at the system composition level, the system engineer must understand how
the various domain products integrate into the system development process at the requirements
definition level. This section will use instructor-provided domain models, system requirements
and a domain-specific library to illustrate and support the development of a specific system
architecture and a system prototype. This is an intensive hands-on part of the course.

A. Domain-Specific Libraries:

A domain-specific reuse library is used as a tool to model the domain and build
a system. The instructor will review some of the earlier library concepts and any
additional considerations necessary to build and use a domain-specific library.

B. Instantiation of the Generic Architecture:

Using a generic architecture and reuse library, the student will build a specific
system architecture from an instructor-provided generic architecture. The
instructor will use this activity to:

1. Demonstrate to the students how to use the domain-specific reuse library.

2. lllustrate to the students how the generic domain analysis products can clarify
requirements.

3. Show how the generic domain analysis products can be used to define
requirements.

Lab: Design a specific system architecture by using the simple domain model
and generic architecture.

Pap 32

STARS-VC-B003/001/00 29 Jimary 1994

C. Generic Artifacts and System Composition:

The software components contained within the software reuse library have been
designed in a manner that enables them to be reused without detailed knowledge
of the code itself. These components can be assembled to create a prototype. The
majority of the course time will be spent doing this exercise.

Lab: The students will perform system composition using the software reuse
library, the revised requirements, and the application architecture defined in the
previous section.

1. Collect components

2. Record issues, trade-offs and design rationale

3. Link artifacts

4. Integration testing

5. Taking the prototype to the actual system

6. Component adaptation

D. How Reuse Fits their Process:

The students will discuss their current system and software development processes.
The instructor will help them identify how reuse can be incorporated into their
specific processes.

3.2.4 Summary

The instructor will:

"* summarize the important software reuse activities that have been introduced to the
student.

"* encourage discussion and clarify any issues raised by the students.

"• stress the lessons learned during the students' hands-on activities.

This summary will reiterate all the important tasks and how they affect the student.

3.2.5 Lessons Learned

A. Points Confirmed:

Pap 33

STARS-VC-BOO3,)01,)0 29 ai•ary 1994

1. Improved effectiveness and efficiency of system development,

2. Reduced system development time (testing time and integration),

3. Provided means to rapid prototype systems,

4. Helped clarify requirements (constraints and interfaces),

5. Built trust in domain analysis products,

6. Made job easier.

B. Factors for Failure:

1. Lack of management support for education and training,

2. Lack of company incentives,

3. No quality assurance for evaluating reuse integration into system development,

4. Tools supporting reuse not provided,

5. Lack of system engineer motivation.

3.3 TRAINING INSTRUCTOR

3.3.1 Job Description

The instructor is responsible for conducting a tailored implementation of the recommended course
content through a lecturelworkshop format.

This is accomplished by completing the following tasks:

"* consulting the reference documents listed in Section 3.4,

"* updating the recommended outline of course content,

"* preparing appropriate training materials,

"* conducting the training session,

"* developing lab exercises,

Paqe 34

STARS-VC-BO03)001/00 29 uumy 1994

"* ensuring that the atmosphere of the training session is informal and relaxing,
intellectually stimulating, and learner-centered,

"* integrating lecture, discussion, and small working groups into the training session,

"* leading the course completion criteria workshop, and

"* providing an evaluation of the course completion criteria.

3.3.2 Formal Education

The instructor should hold at least a BS degree in system/software engineering (an MS degree
is preferred) or a degree in computer science or a closely related field.

Knowledge of Instruction

The instructor should possess an understanding of the principles of learning and the methods of
teaching, an ability to apply these principles and methods, and excellent communication skills.

3.3.4 Practical Teaching Experience

The instructor should have at least two years of experience in planning and conducting short
courses and should possess teaching experience (at least two years), and should possess
experience teaching system and software engineers.

3.3.5 Knowledge of Subject

The instructor should possess:

"* experience in the system engineer processes,

"* knowledge and an understanding of the impact of integrating reuse into these
processes,

"* formal training in the form of a workshop or seminar on domain analysis and
domain-specific reuse,

"• practical experience in reuse library operations, and

"* work experience as system engineer or software engineer.

Pap 35

STARS-VC- 3/001)0W 0 29 junly 1994

3.4 BIBLIOGRAPHY FOR DEVELOPING THE SYSTEM/SOFTWARE ENGINEERS
COURSE

The training instructor should consult the following documents in preparing the tailored
implementation of the course content and the training materials:

1. Application Engineering With Domain-Specific Reuse Course Description, Central
Archive for Reusable Defense Software (CARDS), STARS-AC-04102B/001/00, 06
March 1993.

2. Architectural Implications For Components Seminar Report, Central Archive for
Reusable Defense Software (CARDS), Draft- STARS-VC-B008/000/00.
Scheduled for release: 29 January 1994.

3. Basili, V., Caldiera, G., and Cantone, G. A Reference Architecture for the Compo-
nent Factory. ACM Transactions on Software Engineering and Methodology, Vol.
1 No. 1, Jan 1992.

4. Bell, T. '90s employment: some bad news, but some good. IEEE Spectrum, Dec

1990.

5. Biggerstaff, T. Topics In Reuse and Design. IEEE Video, 1991.

6. Biggerstaff, T., and Perils, A. Software Reusability Concepts and Models. Vol. 1,
ACM Press, 1989.

7. Cohen, S. Modeling Software Reuse Technology: Feature Oriented Domain
Analysis (FODA). SEI, Carnegie Mellon University, May 1992.

8. Component Provider's & Tool Venders Handbook, Central Archive for Reusable
Defense Software (CARDS), STARS-AC-0411/001/00, 15 Mar 1993

9. DiTomaso, N., and Farris, G. Diversity in the High-Tech Workplace. IEEE
Spectrum, Jun 1992.

10. Engineers Handbook, Central Archive for Reusable Defense Software (CARDS),
STARS-AC-04112/001/00, 12 Feb 1993.

11. Fairley, R., and Freeman, P. Issues in Software Engineering Education.
Springer-Verlag, 1989.

12. Feiler, P. Configuration Management Models in Commercial Environment.
SEI-91-TR-7, SEI, Carnegie-Mellon University, Mar 1991.

Pap 36

STARS-VC-B./o0/Oo 29 Jamry 1994

13. Frakes, W., Prieto-Diaz, R., and Arnold, R. Software Reuse, Domain Analysis,
and Reengineering. Reston, Virginia, 6-8 April 1992.

14. Freeman, P. Tutorial: Software Reusability. IEEE Computer Society Press, 1987.

15. Gause, D. and Weinberg, G. Exploring Requirements Quality Before Design.
Dorset House Publishing, 1989.

16. Glass, R. Building Quality Software. Prentice Hall, 1992.

17. Gomaa, H. Kerschberg, L., Bosch, C., Sugumaran, V., Tavakoli, I. A Prototype
Software Engineering Environment For Domain Modeling and Reuse, Sixteenth An-
nual Software Engineering Workshop. NASA Goddard Software Engineering
Laboratory, Dec 1991.

18. Hooper, J., and Chester, R. Software Reuse Guidelines. AIRMICS, 13 Dec 1989.

19. Matsumoto, Y. Some Experience in Promoting Reusable Software: Presentation in
Higher Abstract Levels.

20. Transaction on Software Engineering, Vol. SE-10 No. 5, Sep 1984.

21. Pressman, R. Software Engineering A Practitioner's Approach. McGraw-Hill, 1987.

22. Prieto-Diaz, R. Implementing Faceted Classification for Software Reuse.
Communications of the ACM, Vol. 34 No. 5, May 1991.

23. Prieto-Diaz, R., and Arango, G. Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, May 1991.

24. Sommerville, I. Software Engineering. Addison-Wesley, 1989.

25. Tomayko, J. Software Engineering Education. SEI Conference 1991,
Springer-Verlag, Oct 1991.

26. Tracz, W. Ada Reusability Efforts: A Survey of the State of the Practice. Proceed-
ings of the Joint Ada Conference, Fifth National Conference on Ada Technology
and Washington Ada Symposium, US Army Communications-Electronics
Command, Fort Monmouth, New Jersey.

27. Tracz, W. Tutorial: Software Reuse: Emerging Technology. IEEE Computer
Society Press, 1990.

Pope 37

STARS-VC-BOO310I/00 29 Janay 1994

28. Tracz, W., and Coglionese, L. Domain-Specific Software Architecture Engineering

Process Guidelines. ADAGE-IBM-92-02, Ver. 0.1, IBM Corporation, 17 Mar 1992.

29. Withey, I. Model-Based Engineering. SEI Tutorial slides, Mar 1992.

30. Yourdon, E. Modem Structured Analysis. Yourdon Press Computing Series, 1989.

Pop 38

STARS-VC-BOO3/001/00 29 Jinay 1994

4 TRAINING COURSE FOR UNIVERSITIES

The main objective of this course is to provide university professors with an understanding
of software reuse, and to identify potential avenues for integrating domain-specific reuse into
university courses and curricula.

4.1 COURSE CHARACTERISTICS

4.1.1 Rationale

Reuse is a recurring topic which must be addressed throughout the computer science curriculum.
The incorporation of reuse into the current curriculum will provide students entering the work
force with an awareness of the benefits and application of reuse. This course will provide support
for the integration of reuse concepts into university curricula.

4.1.2 Course Objectives

The learning objectives for this course are to provide professors with an understanding of reuse,
and domain-specific reuse; and to identify potential avenues for integrating domain-specific reuse
into their courses and curricula.

4.1.3 Course Completion Criteria

The course completion criteria allows for small interactive working groups to apply concepts and
techniques identified by the course's content areas, producing products as proof of completing
the training course. Upon completion of the training course the participants will be able to:

" understand where analysis techniques, reuse concepts, and model engineering fit into

the current computer science curriculum,

"* identify courses where reuse may be integrated,

"* outline specific procedures for implementing reuse across the curriculum, and

"* formulate a "strawman" curriculum with course descriptions.

4.1.4 Audience Characterization

This course is intended for college and university faculty who possess an interest in:

* the concept of reuse,

Po 39

STARS-VC-B0OMMUO 29 J3a 1994

"* renaining competitive with other universities,

"• new research topics, and

"* integrating reuse into their software engineering instruction.

The intended audience is responsible for curriculum development, appropriations and developing
hiring guidelines. It is assumed that the participants have a software engineering background.

4.1.5 Student Readings

1. Arnold, R. S. Heuristics for Salvaging Reusable Parts from Ada Source Code. Ada

Reuse Heuristics, 90011-N, Software Productivity Consortium, Mar 1990.

2. Braun, C. Ada Reusability Guidelines. Softech, Apr 1985.

3. Computing Curricula 1991 - Report of the ACM/IEEE-CS Joint Curriculum Task
Force. ISBN 0-8186-2220-2, Mar 1991.

4. Frakes, W. B. An Empirical Framework for Software Reuse Research. Proceedings
of the Third Workshop on Methods and Tools for Reuse, No 9014, Syracuse
University CASE Center, 1990.

5. Freeman, P. Reusable Software Engineering: Concepts and Research Directions.
Workshop on Reusability in Programming, ITT Programming, Sep 1983.

6. McClure, C. The Three R's of Software Automation: Reengineering, Repository,
Reusability. Prentice Hall, 1992.

7. Pressman, R. S. Software Engineering: A Practitioner's Approach. McGraw Hill,
1992.

4.2 OUTLINE OF COURSE CONTENT

The following is an outline of the recommended course content for univerities.

4.2M Reuse as Part of the Solution

A. The Dilemma:

1. Software industry:

a. Increasing software costs versus hardware costs,

FaP 40

STARS-VC-BO03/001/00 29 Jamiay 1994

b. Increasing complexity of software,

c. Increasing development time,

d. Shortage of experienced personnel.

2. Customer:

a. Demand for high quality products,

b. Demand for low risk products,

c. Demand for automated programming support,

d. Demand for customized software packages.

B. The Solution:

1. What is Reuse?

a. The process of incorporating into the life-cycle of a software system any
preexisting components (e.g, requirements, design, code, executables).

b. Examples.

2. Why Reuse?

a. Reduces schedule,

b. Increases productivity:

Amplifies programming capabilities,

Reduces the amount of documentation and testing.

c. Increases quality:

Software is well designed (for reuse),

Software is well documented (standard),

Software is well tested (certified),

Software is well understood (functionality),

Pap 41

grARS-VC-BO03/001/00 29 iauary 1994

Concepts are manifested in rapid prototyping.

d. Increases reliabiity,

e. Reduces maintenance costs,

f. Overall, reuse allows for more system development within the same time
frame,

g. Reduces development costs.

3. Evolution of Reuse:

a. Early reuse projects,

b. Reuse successes,

c. Current approaches and concepts:

Components and wide spectrum reuse,

Composition versus generation,

Design for reuse,

Design with reuse,

Life-cycle importance of reuse.

4..2 Introduction to Domain-Specific Reuse

A. What is a Domain?

1. A domain is a set of common capabilities and data which constitute a set of

current and future systems in a particular application area, such as:

a. A business area,

b. A software business area,

c. A software intensive application area,

d. An application area for which similar software systems have been builL

Pap 42

SrARS-VC-B(00,O1/00 29 Jnmry 1994

2. Examples.

B. What is Domain-Specific Reuse?

1. Reuse of ideas, knowledge, artifacts, personnel, and components in an existing
domain.

2. Examples.

C. Why Domain-Specific Reuse?

1. Reuse is more effective in a narrow, well defined domain where similar systems
are built.

2. Examples.

D. Domain Selection Checklist:

1. Define strategy.

2. Select domain analysis resources.

3. Identify boundaries/scope of domain.

4. Select mature, stable, well-defined domain.

5. Define predictable technology.

6. Perform market evaluation.

7. Identify available domain expertise.

8. Conduct readiness cost and benefit analysis.

E. Existing Technological Support:

1. STARS efforts,

2. CARDS,

3. PRISM,

4. DSRS,

Page 43

STARS-VC B003/001/00 29 Jwnuy 1994

5. Others.

4.2.3 Reuse and the Software Life-Cycle

A. Design for Reuse.

Build into the design and implementation the flexibility, variations and adaptability
to create a reusable component.

B. Design with Reuse.

Incorporate available reusable assets into system analysis and design.

C. Entry-points of Life-cycle Artifacts.

It is important to stress that reusable components include all life-cycle artifacts
such as requirements, design, code, test suites.

D. Reengineering:

1. When to reengineer,

2. Economic considerations,

3. Data reengineering and software reengineering,

4. Benefits of reengineering:

a. Reduced maintenance,

b. Upgrading software along with upgrading software engineering practice,

c. Easier documentation and testing.

5. Incremental reengineering.

E. CASE:

1. Features of CASE tools,

2. CASE Issues,

3. Sample CASE tools,

4. CASE tools as a research topic.

Pop44

SrARS-VC-4•B301A•0 29 Iaumy 1994

4.2.4 Considerations When Integrating Reuse

A. Economic Issues.

A university must consider the costs associated with incorporating reuse.

1. How much will it cost to implement reuse into the curriculum?

2. Component availability.

3. Library maintenance and availability.

4. Is new hardware required?

5. Network connection cost.

6. What are the alternatives?

B. Feasibility Analysis.

A university must decide if it is feasible to incorporate reuse into their current
curriculum.

1. Is the reuse program supported by administration?

2. Does the school have the resources to implement the program?

3. Does the department have personnel with the appropriate training?

4. What is the scope of reuse in the curriculum?

C. Administrative/Departmnental Issues.

1. Departmental support:

a. Professors,

b. Instructors,

c. Assistant chairman,

d. Chairman.

e. Does the department have a long term commitment to reuse?

Pap 45

STARS-VC-BO03/)0 29 Jammy 1994

2. Administrative Support:

a. Dean of college,

b. Dean of academic affairs.

c. Is the administration aware of the benefits of reuse?

3. Technical Aspects:

a. Can existing hardware be used?

b. What networks need to be accessed?

c. What library mechanisms are required?

d. What other software is required (CASE tools)?

e. Alternatives.

4. Incremental In-House Reuse:

a. Software engineering,

b. Design for reuse and data abstraction,

c. System analysis,

d. Domain analysis,

e. Put components designed for reuse into in-house reuse library,

f. Design with reuse using existing in-house reuse library,

g. Introductory courses and reuse concepts.

4.2.5 Continuing Education/Research

A. Does the staff have interest in reuse as a research topic?

B. Is there funding available from Government/industry to support research?

Pap 46

STARS-VC-.O03/001)00 29 Jiuay 1994

4.2.6 Summary of Content

A. Gain firm commitment from staff and administration,

B. Assess benefits of introducing reuse into the curriculum,

C. Identify and resolve impediments to the introduction of reuse into the curriculum.

43 TRAINING INSTRUCTOR

4.3.1 Job Description

The training instructor is responsible for conducting a tailored implementation of the recom-
mended course content through a lecture/workshop format. This is accomplished by completing
the following tasks:

"* consulting the documents listed in Section 4.4;

"* updating the recommended outline of course content;

"* preparing appropriate training materials;

"* estimating the duration of the training session based on a blend of optimum
cost-effectiveness and covering the course content thoroughly;

"* conducting the training session;

"* seeing that the t. iosphere of the training session is informal and relaxing,
intellectually stimulating, and learner-centered;

"* integrating lecture, discussion, and small working groups into the training session;

"* leading the course completion criteria workshop; and

"* providing an evaluation of the course completion criteria.

4.3.2 Formal Education

The instructor should hold a PhD in computer science, software engineering, system engineering,
or a closely related field.

Pap 47

SrARS-VC-BOO3001•X0 29 iamay 1994

4.3.3 Knowledge of Instruction

The instructor should possess an understanding of the principles of learning; the methods of
teaching; an ability to apply these principles and methods; and excellent communication skills.

4.3.4 Practical Teaching Experience

The instructor should possess teaching experience (at least two years), experience in planning
short courses, and in addressing university faculty.

4.3.5 Knowledge of Subject

The instructor should possess formal training in the form of a workshop or seminar on domain
analysis and domain-specific reuse, and work experience in software development, domain
analysis, and reengineering.

4.4 BIBLIOGRAPHY FOR DEVELOPING UNIVERSITY COURSE CONTENT

The training instructor should consult the following documents in preparing the tailored
implementation of the course content and the training materials.

1. Matsumoto, Y. Some Experience in Promoting Reusable Software: Presentation in

Higher Abstract Levels. IEEE

2. Transaction on Software Engineering, Vol. SE-10 No. 5, Sep 1984.

3. Pressman, R. Software Engineering A Practitioner's Approach. McGraw-Hill, 1987.

4. Tomayko, J. Software Engineering Education. SEI Conference 1991,
Springer-Verlag, Oct 1991.

5. Tracz, W. Ada Reusability Efforts: A Survey of the State of the Practice. Proceed-
ings of the Joint Ada Conference, Fifth National Conference on Ada Technology
and Washington Ada Symposium, US Army Communications-Electronics
Command, Fort Monmouth, New Jersey.

Pap 48

STARS-VC-B003i/001/00 29 JanMy 1994

5 EXECUTING THE TRAINING PLAN

There are two primary methods by which the Training Plan can be effectively executed.

5.1 ONE COURSE AT A TIME

The first method is to conduct each course independent of the other courses, i.e., one course at a
time. This is accomplished by appointing a Training Supervisor to oversee the training course's
management and a Training Instructor to conduct the actual training session.

All of the necessary information for pursuing this strategy is encapsulated for each training course
in its respective section in this document. This allows for each training course to be independently
removed from the Training Plan and forwarded to perspective implementors without any required
knowledge of the other training courses.

5.2 INTEGRATED PACKAGE

The second method is to conduct each course as an integral part of a total package. This requires
appointing a Training Executor to oversee the top-level management of this strategy.

The Training Executor identifies organizations that have a working relationship to enable more
than one organization to attend the same class. The Training Supervisors and Training Instructors
function in the same manner as they would in conductin; independent versions of their courses.
The Executor then formulates a coherent set of instructional courses for each audience.

Of the two methods for executing the Training Plan, the integrated package will have a stronger
impact on integrating reuse and a higher potential of accomplishing a shift within DoD and
industry to reuse-based domain-specific software development.

The necessary information for pursuing this strategy is a combination of each of the three
training courses and the administrative functionality of the Training Executor. Each training
course becomes a tailored implementation of the Training Plan based not only on the target
audience but also on considerations of the other audiences.

5.3 TRAINING EXECUTOR

The Training Executor's functionality is important for the successful implementation of the
Training Plan as an integrated package, To ensure proper and efficient implementation of the
Training Plan, the Training Executor is responsible for completing the following tasks:

Identify DoD organizations, DoD contractors, and universities that have previously
established a working relationship with each other. These audiences could also be
identified from a geographical perspective to assist in building such working
relationships;

Page 49

rAiS-VC--O030JVO,0O 29 Jmmy 1994

"* Select an appropriate training facility available to all a,, uences, if applicable;

"* Coordinate the efforts of Training Supervisors;

"• Assure the correct implementation of the Training Plan based on the established
working relationship between DoD organizations, DoD contractors, and universities;
and

"* Monitor the impact of the training across the three audiences.

5.4 TRAINING SUPERVISOR

The training supervisor's functionality is important for the successful execution of the training
course. The time period for completing the following tasks is approximately 6-8 weeks. The
Training Supervisor is responsible for:

"* describing the intent of the course to the Training Instructor;

"* determining the optimum number of participants;

"* scheduling the training sessions by coordinating the facility's availability with the
Training Instructor;

"• addressing food, lodging, and transportation;

"* registering the participants;

"* forwarding materials to each participant;

"* coordinating all efforts between the Training Instructor, facility staff, and Training
Executor;

"• assuring the correct implementation of the recommended course content by the
Training Instructor;

"* securing training equipment;

"* reproducing training materials;

"* administering evaluations of the training;

"* producing a lessons learned document containing information that may be used in
updating the Training Plan and/or the course content at a later date; and

P8o50

STARS-VC-BOM01A00 29 Jimmy 1994

* documenting the impact of the training by tracking requests for further training and
requests for further information.

5.5 TRAINING FACILITY

The style of the classroom must be established. Some factors to consider:

"* lecture versus conference style room,

"* seating capacity,

"* computer resources, and

"* proximity to convenient facilities.

Training devices appropriate to the types of training materials must be available.

5.6 PRICE WORKSHEET

The following is a Price Worksheet to assist in predicting dollar amounts for conducting the
training courses.

A. Price Worksheet

1. Administration

2. Instructional time/travel costs

a. Supervisor

b. Instructor

c. Technician

d. Participant time/travel costs

3. Scheduling training session

4. Registration of participants

5. Site set-up

6. Refreshments

Page 51

STARS-VC-DOO3/OOIqOO 29 Jwy 1994

7. Communications

B. Course Materials

I. Preparation for training inscwtor

a. Agenda

b. Course outline

c. Handouts

d. Transparencies/overheads

2. Reproduction for participants

a. Paper copies of slides

b. Lab worksheets

c. Handouts

d. Course evaluation forms

e. Proceedings

C. Support Costs

1. Facilities

2. Equipment

p 52

STARS-VC-BOO03001/0l 29 Jamuy 1994

APPENDIX A - Application Engineering with Domain Specific Reuse

A.1 INTRODUCTION

A.1.1 PURPOSE

This course provides the basis for incorporating domain-specific reuse into system and software
development processes. This course introduces the methods necessary to integrate domain-
specific software reuse concepts into current system and software development processes by
providing an overview to domain engineering and detailed guidance on application engineering.
The course is intended for use in both Government and industry training and can be tailored for
presentation at the university level.

A.1.2 CARDS PROGRAM MISSION

The Central Archive for Reusable Defense Software (CARDS) Program is a concerted
Department of Defense (DoD) effort to transition advances in te techniques and technology of
library-centered, domain-specific software reuse into mainstream DoD software procurements.
There are three key elements to the CARDS approach:

1. Apply domain-specific reuse techniques and technology to produce an operational
library for command centers

2. Develop and transition, through a Franchise Plan, the "knowledge" for domain-
specific reuse to the DoD and DoD Software Development Industry

3. Develop and transition a Training Plan and training courses as a vehicle for
enhancing the acceptance of the Franchise Plan.

4. The domain-specific reuse knowledge gained during the CARDS effort will be
conveyed via a Franchise Plan and three sets of documents: Reuse Adoption Hand-
books, CARDS library operation and maintenance related documents, and training
and educational material.

A.1.3 RELATIONSHIP TO OTHER CARDS DOCUMENTS

The Franchise Plan provides a description of reuse processes and instructions for tailoring
development processes to effect domain-specific reuse. It describes, in precise steps, a scenario
for an organization to establish a domain-specific reuse capability. The Reuse Adoption
Handbooks consist of the Component and Tool Developer's, Acquisition, Direction Level,
and Engineer's Handbooks. Together these four handbooks address software development,
program management, and executive planning. The Component and Tool Developer's Handbook

Pag A-I

STARS-VC-BO03/001/00 29 Jamway 1994

addresses the development of reusable software components. Software industry vendors
supporting Government acquisitions are provided with guidance for developing/creating domain-
specific reusable components and tools supporting reuse. The goal of this Handbook is to
stimulate the development and commercialization of large scale components and tools for vertical
domains. [CARDS93b]. The Acquisition Handbook assists Government Program Managers
and their support staff in incorporating software reuse into the acquisition and maintenance
portions of the life-cycle proc-,ss. The Acquisition Handbook provides guidance in planning the
acquisition strategy, contract award, managing the effort, and follow-on support [CARDS93c].
The Direction Level Handbook offers a framework to assist Government acquisition executives
in establishing plans to manage software reuse across their systems. Importance is placed on
the policy and business issues (e.g., regulations, incentives, funding, cost/benefit, education and
training, and ownership of components) that act as the support structure for reuse [CARDS92a].
The Engineer's Handbook provides guidance to Government System Program Office (SPO)
Engineers on envisioned changes to their duties and responsibilities as domain-specific software
reuse becomes incorporated into mainstream DoD system/software acquisition and engineering
processes. [CARDS93a].

Although some of the CARDS library operation and maintenance documents are spemnc to the
CARDS library, they can be used by other organizations to learn how reuse was implemented
in the command and control domain. These CARDS documents address the library's operations
procedures, the technical concepts, project management plans, as well as describing the domain
model. The CARDS training effort includes a Training Plan, course outlines, and sample course
materials relating to topics included in each Reuse Adoption Handbook. They are geared to
educate the software professional and support the reduction of cultural barriers to reuse. They
can be tailored to meet the needs of varying audiences. This course has been developed as a
means of conveying the concepts and techniques introduced in the Engineer's Handbook.

A.1.4 DOCUMENT ORGANIZATION

The course description begins by providing the reader with a description of the intended course
audience. Section 2 characterizes the student and identifies required prerequisite knowledge.
Section 3 provides the reader with a guideline for selecting an instructor to present the course.
Section 4 provides a course overview. Course content for each of the units is described in detail
in Section 5. Included with this course description is a sample set of course materials. The
materials can be used as they are, or modified to suit the needs of the presenting organization.

A.2 STUDENT

A.2.1 STUDENT CHARACTERIZATION

This course is intended for experienced system and software engineers.

Pap A-2

STARS-VC-BO03/001/O 29 Jmnay 1994

A.2.1.1 System Engineers

System engineers are concerned with the decomposition of systems, the allocation of software
development responsibility for specific system components to software engineers, and with the
subsequent composition of software and hardware system components to produce the final
system [TOMA9l]. System engineers begin with customer-defined goals, requirements and
constraints and derive a representation of function, performance, interfaces, design constraints,
and information structure that can be allocated to each of the generic system elements [PRES87].

A.2.1.2 Software Engineers

To accommodate function and performance, defined during system engineering, software
engineers must build or acquire a set of software components [PRES87]. The software engineer
is responsible for analyzing software requirements, developing or identifying existing software
designs and software components, and integrating, testing, and maintaining software components.

A.2.1.3 Student Prerequisite Knowledge

Successful completion of this course requires that the student possess prior experience
participating in a complex software development project (e.g., at least 100K Source Lines of
Code). Students must possess knowledge of systems analysis and requirements analysis, and
knowledge of structured analysis design techniques and/or object-oriented design techniques to
the depth presented in a one semester undergraduate advanced software engineering course. The
student should be literate in the programming language(s) used for the course Jiemonstration
material.

A INSTRUCTOR

A.3.1 JOB DESCRIPTION

The instructor is responsible for conducting a tailored implementation of the recommended course
content through a lecture/activity format. This is accomplished by completing the following tasks:

1. Consulting the reference documents,

2. Reviewing the recommended outline of course content and choosing appropriate
levels of content based on audience and time,

3. Preparing appropriate training materials,

4. Setting up activities,

5. Ensuring the atmosphere of the training session is informal, relaxing, intellectually
stimulating, and student-centered,

Pape A-3

STARS-VC-BOO3/0i/oOl 29 Jiway 1994

6. Integrating lecture, discussion, and small working groups into the training session,

7. Conducting the training session,

8. Leading the course completion criteria activities,

9. Providing an evaluation of the course completi•'i criteria.

A.3.2 FORMAL EDUCATION

The instructor should hold at least a BS degree in software/system engineering (an MS degree

is preferred) or a degree in computer science or a closely related field.

A.3.3 KNOWLEDGE OF INSTRUCTION

The instructor should possess an understanding of the principles of learning and teaching
methodologies, an ability to apply these principles and methods, and excellent communication
skills.

A.3.4 PRACTICAL TEACHING EXPERIENCE

The instructor should have at least two years experience teaching short courses, should have a
minimum of two years experience teaching at the collegiate level, and should possess experience

addressing system and software engineering personnel.

A.3.5 KNOWLEDGE OF SUBJECT

The instructor with an MS degree should possess a minimum of five years practical work

experience in the system and software engineering processes, or ten years experience with a BS
degree. The instructor must be knowledgeable in software reuse and understand the impact of
integrating software reuse into system and software engineering processes. The instructor must
have completed formal training in the form of a workshop or seminar on domain analysis and
domain-specific software reuse. For presentation of the course to DoD personnel, the instructor
should also have knowledge of general DoD engineering and procurement standards as well as
the various DoD mandates effecting system development and maintenance.

A.3.6 SKILL IN PERFORMANCE

The instructor should be able to demonstrate the ability to perform the tasks required in the
practical application of the training course and demonstrate the ability to conduct domain analysis
activities and perform application engineering using the products of domain engineering.

Pag A-4

STARS-VC-B4300MI$00, 29 Jinuy 1994

A.4 COURSE OVERVIEW

A.4.1 COURSE BREAKDOWN

The content for this course has been broken into seven units. These units can be presented
independently or contiguously. Students should attend units in the order described; however,
units can be skipped if students possess the knowledge to be presented. The units comprising
this course are as follows:

Unit 1: Introduction and Rationale. Anticipated Duration: 2 hours

An introduction to the DoD Software Reuse Vision and Strategy [DOD92] is provided. An
overview of the CARDS Program is presented and DoD reuse coordination efforts are discussed.

If the presenting organization is not CARDS, an appropriate introduction should replace this
unit. It is recommended that the introduction include an overview of the presenting organization
and its rationale for teaching domain-specific reuse.

Unit 2: Software Reuse Concepts. Anticipated Duration: 2 hours

An overview of software reuse is presented. This unit addresses why reuse should be considered
and how long reuse has been practiced. Reusable components are defined. Differences in reuse
approaches are discussed (e.g., ad hoc, opportunistic, systematic, large scale reuse, small scale
reuse). Finally, potential risks and benefits associated with reuse are presented.

Unit 3: Domain-Specific Reuse. Anticipated Duration: 2 hours

A brief history of domain-specific reuse begins this unit. An overview of domain engineering
is provided and the products of domain engineering are discussed. Application engineering
within the domain-specific reuse framework is introduced and explored. Students learn how
domain engineering products are incorporated into every software development activity from
requirements analysis through maintenance.

Unit 4: Domain Analysis Overview. Anticipated Duration: 4 hours

This unit provides an overview of domain analysis activities and products. Students receive
hands-on experience performing context analysis and developing a domain model. This is a
high-level domain analysis unit. It is not intended for students who will actually perform domain
analysis tasks. Instead it has been developed to provide students who will use domain analysis
products with a better understanding of what the products are and how they were developed.

Unit 5: Software Reuse Libraries. Anticipated Duration: 2 hours

An overview of component-based and model-based libraries is provided. Students are introduced
to various types of library representations and mechanisms, and certification and qualification
of library components. The intent of this unit is to build trust in the students for reusable
components. Students will learn to use an actual reuse library.

Unit 6: Application Engineering. Anticipated Duration: 8 hours

Pape A-5

9rARS-VC-B3/001/0 29 Jamary 1994

This unit is intended to teach students how to perform application engineering using the products
of domain engineering. Students perform requirements analysis and application prototyping
using a reuse library. The impact of domain-specific reuse on system maintenance activities is
discussed. The format of this unit is both lecture and activity.

Unit 7: Reuse Barriers. Anticipated Duration: 1 hour

Barriers to reuse are addressed in this unit. For each barrier discussed, the instructor presents
possible solutions students can use to overcome these obstacles. Students will explore the
potential barriers they can expect to encounter in their work environment and how they can plan
to overcome them.

A.4.2 COURSE COMPLETION CRITERIA

When the course is presented using all the units identified above, the following products will be
produced as proof of course participation:

1. A context model for a simple domain,

2. A domain model for a simple domain,

3. A system architecture from a generic architecture provided by the instructor,

4. A system prototype using a domain-specific software reuse library.

A.4.3 COURSE TAILORING

The following are examples of how this course can be tailored to particular audiences.

A.4.3.1 DoD Personnel With No Reuse Experience

When the course is presented to DoD personnel with no reuse experience, all seven units, defined
above, will be presented. All activity examples will be DoD based, and the modeling performed
in Unit 4 will use IDEFO and IDEFIX modeling languages.

AA.3.2 University Graduate Students

When the course is presented to university graduate students, all seven units will be presented.
The course duration will change to fifteen weeks, as follows:

Unit One: Introduction and Rationale will be presented in 1 day.

Unit Two: Software Reuse Concepts will be presented in 1 week.

Unit Three: Domain-Specific Reuse will be presented in 1 week.

Page A-6

STARS-VC.-BOMO$00 29 Jaauy 1994

Unit Four Domain Analysis Overview will be presented in 2 weeks.

Unit Five: Software Reuse Libraries will be presented in I week.

Unit Six: Application Engineering will be presented in 8 1/2 weeks.

Unit Seven: Reuse Barriers will be presented in 1 week.

The activity defined in Unit 6 will be extended to a real-world, large-scale development effort.
Students will perform all aspects of application engineering from requirements analysis through
maintenance using existing domain engineering products. Students will identify the differences
between software development with and without domain-specific reuse. It is essential that
students have a working knowledge of structured analysis design techniques and/or object
oriented design techniques.

A.5 ANNOTATED COURSE OUTLINE

A.5.1 UNIT 1 - INTRODUCTION AND RATIONALE

A.5.1.1 Learning Objectives

This introduction has been developed for presentation of the course by CARDS. Since CARDS
is a concerted DoD effort, it is necessary for students to understand the software reuse goals
of the DoD. The objectives of this lecture are to provide students with an understanding of the
DoD Software Reuse Vision and Strategy document, the CARDS Program goals and products,
and the role of CARDS in the DoD's current reuse efforts. If this course is being presented
by an organization other than CARDS, this unit can be replaced in its entirety, or the CARDS
overview may be removed and replaced with an overview of the presenting organization. Upon
completion of this lecture the student will be able to:

1. Explain DoD's Software Reuse Vision and Strategy,

2. Define process-driven,

3. Define domain-specific,

4. Define architecture-centric,

5. Define library-assisted,

6. Define the goals of the CARDS Program,

7. List the major activities, products, and services of the CARDS Program,

8. Describe the role CARDS plays in DoD's reuse efforts,

Pope A-7

SrARS-VC-B| 3003 1/0 29 Jinuy 1M

9. Explain what is meant by library interoperability,

10. Explain the interoperability coordination among the major DoD reuse efforts.

A.5.1.2 Lecture Content Area

A. DoD Software Reuse Vision and Strategy Overview

The DoD Software Reuse Vision and Strategy [DOD92] describes an initiative
which will make a reuse-based paradigm the preferred alternative for developing
and supporting software. Students will learn what this document is and how it
may effect the way they currently practice software development.

1. Considerations

There are infrastructure investments associated with establishing an effective
reuse program. The DoD Software Reuse Vision and Strategy considers the
following [DOD92]:

a. The objective is systematic (planned), not opportunistic reuse,

b. There is no singular approach to software reuse,

c. Libraries facilitate but do not enable reuse,

d. Reuse is a process, not an end-product,

e. Domain analysis/models/architectures are the primary focus,

f. Near term cost savings will be offset by infrastructure investments,

g. Ada provides a foundation upon which to base reuse efforts.

2. The Vision

"To drive the DoD software community from its current 're-invent the
software' cycle to a process-driven, domain-specific, architecture-centric,
library-assisted way of constructing software"[DOD92].

a. Process-Driven

Software development is done in accordance with well defined, repeatable
processes that are enforced through management policies and for which,
at a minimum, definition and guidance are provided in the software
engineering environment [STARS92a].

Po A-8

rARS-VC-BO•3/00 29 Jaay 1994

b. Domain-Specific

A domain is an area of activity or knowledge containing applications which
share a set of common capabilities and data. Domains should be exploited
to support the reuse of a wide spectrum of products, including but not
limited to requirements, architectures, designs, algorithms, subsystems,
test plans, and development processes.

c. Architecture-Centric

Generic architectures will be used for well established domains to develop
generic software components. The goal is to achieve "black-box" reuse.
Black-box reuse is realized when components can be interchanged simply
by removing one and replacing it with another.

d. Library-Assisted

A network of interconnected, "interoperable" reuse libraries will be
developed which will be used to store, manage and retrieve reusable
components within and across domains.

3. The Strategy

"The strategy to realize this vision is based on systematic reuse: where op-
portunities are predefined And a process for capitalizing on those opportunities
is specified" [DOD92]. The strategy is broken down into the ter following
elements:

a. Specify domains where reuse opportunities exist,

b. Define reusable products and develop evaluation criteria,

c. Determine ownership criteria of reusable products,

d. Modify the current acquisition process, and integrate reuse into every phase
of the system/software life-cycle,

e. Define models which support reuse, to include business decision models,
domain models and domain software architectures,

f. Establish metrics collection procedures through which program management
can gauge reuse success,

g. Define component standards,

Pap A-9

SrARS-VC-BOO3001/000 29 Jamuy 1994

h. Pursue a technology-based investment strategy which identifies, tracks, and
transitions appropriate reuse-oriented process and product technologies,

i. Conduct comprehensive training of management and technical personnel,

j. Exploit near-term products and services which facilitate movement to a

reuse-based paradigm.

B. CARDS Overview [WAL92]

The Central Archive for Reusable Defense Software (CARDS) Program is a
concerted Department of Defense (DoD) effort to transition advances in the
techniques and technology of architecture-based, library-assisted, domain-specific
software reuse into mainstream DoD software procurements. Students will learn
what the goals of the CARDS Program are, what activities CARDS is involved in,
and what products and services CARDS has to offer the DoD software community.
This is intended to be a brief overview. Students will be directed to specific
documents for additional information.

1. Program Goals

a. Produce, document, and propagate techniques to enable domain-specific reuse
throughout the DoD,

b. Develop a Franchise Plan which provides a blueprint for institutionalizing
domain-specific, library-assisted reuse throughout the DoD,

c. Implement the Franchise Plan with selected organizations and/or provide a
tailored set of services to support reuse,

d. Develop and operate a domain-specific library system and necessary tools.

2. CARDS Products

a. Franchise Plan

A knowledge blueprint is expressed as a Franchise Plan which references
a series of handbooks, library documentation, and training materials, each

targeted to a particular audience which needs to be involved in making
reuse happen in DoD software procurements. The Franchise Plan provides
the necessary structure for implementing a reuse infrastructure in a DoD
organization.

b. Reuse Handbooks

Page A-10

STARS-VC-B31)/001/00 29 Jmmy 1994

The Acquisition Handbook [CARDS93c] is directed toward program
n. -nagers and contracting and legal professionals. It encourages software
reuse during the contractual and acquisition portion of the software
development life-cycle. The Direction Level Handbook [CARDS92a]
is directed toward top-level managers. It acts as a reference to assist
managers in implementing software reuse across programs within a given
mission area. The Engineer's Handbook [CARDS93a] is directed towards
system and software engineers and other technical personnel. It provides
contractor and DoD personnel with software reuse development methods
and techniques to be integrated into their current software engineering
processes. The Component and Tool Developer's Handbook [CARDS93b]
provides a technical basis for the creation of components and tools for
domain-specific reuse libraries.

c. Technical Documents

Documents have been developed detailing CARDS experiences in con-
structing and operating a domain-specific reuse library. These documents
include the Technical Concepts Document (TCD)[CARDS94a], the Li-
brary Operations Policies and Procedures (LOPP)[CARDS92b], and the
Domain Model Document (DMD)[CARDS92c].

d. Training

Education is the foundation for integrating new concepts into an existing
process. During Phase II of the CARDS Program, this Training Plan
[CARDS94b] was developed for DoD and DoD industry personnel, and
undergraduate and graduate computer science and software engineering
students. In addition, a training course and materials for system and
software engineers was developed.

e. Command Center Library

Using the Generic Command Center Architecture produced by the
Portable, Reusable, Integrated Software Modules (PRISM) Program, a
library model based on the Software Technology for Adaptable, Reliable
Systems (STARS) Reusability Library Framework (RLF) technology
has been created and the PRISM components are being added to the
library. The Command Center Library demonstrates the potential of
library-assisted, domain-specific reusability based upon domain-specific
softv'-are architectures. The techniques used to develop this Library
can be applied to new domains. Additional domains are planned. An
informational hotline is available 8 am to 5 pm EST at 1-800-828-8161.

3. CARDS Services

Pape A-li

STARS-VC-BO03/001/00 29 Jnuuy• 1994

The CARDS Program will provide interested parties with technical expertise
in the field of domain-specific, library-assisted software reuse. In the future,
CARDS will provide domain engineers with an implementation framework
for reuse libraries in their domain of interest. CARDS will also guide
application engineers through the selection of alternative components based
on generic architectures. Planned CARDS consulting services include reuse
adoption support, domain analysis/modeling, complete site and operation
survey, feasibility studies, and operational hardware and software installation.

C. Interoperability Coordination Among DoD Reuse Efforts

CARDS is not a program in isolation, but one of several related reuse initiatives.
Students will be provided with an overview of several of the major DoD domain-
specific operational reuse library efforts and how they are coordinating to achieve
interoperability. Students will learn about the Reuse Library Interoperability
Group (RIG) and why CARDS is a participating member. Students will gain an
understanding of how CARDS, the STARS Asset Source for Software Engineering
Technology (ASSET), and the Defense Information Systems Agency (DISA)
Center for Information Management (CIM) Defense Software Repository System
(DSRS) are coordinating.

1. Interoperability

To meet the DoD Software Reuse Vision, the initial steps towards interoper-
ability have been taken by CARDS and ASSET. Plans for the future include
full interoperability between the CARDS Command Center Library, ASSET,
and DSRS.

2. Reuse Library Interoperability Group (RIG)

The RIG is a volunteer, consensus-based organization composed of members
from Government, academia, and private industry. Its job is to draft standards
for the interoperability of reuse libraries in the areas such as nomenclature,
interchange protocols, and software component exchange formats. Most DoD
and other Government reuse library programs are members, such as STARS,
ASSET, CARDS, and DISA/CIM [PAYTON92].

3. Asset Source for Software Engineering Technology (ASSET)

ASSET's mission is to establish a national resource for the advancement of
software reuse across DoD and to foster a software reuse industry in the United
States by providing a distributed support system. ASSET has established a
reuse library and a National Software Technology Transfer center [ASSET91].

4. Defense Information Systems Agency/Center for Information Management
(DISA/CIM)

Pqae A-12

SrARS-VC B003/001/00 29 January~ 1994

The mission of the DISA/CIM Program is to increase productivity and quality
through software reuse. Toward this end the Program provides a reuse
repository, the Defense Software Repository System (DSRS). Some of the
goals of the Program are to implement a software reuse environment which
provides support for the entire software development life-cycle, cultivate
reuse skills, and produce solutions for significant reuse management issues
[DISA92a].

A.5.2 UNIT 2 - SOFTWARE REUSE CONCEPTS

A.5.2.1 Learning Objectives

The objectives of this lecture are to provide the students with an understanding of software reuse
and an appreciation of the potential benefits of reuse. Upon completion of this lecture the student
will be able to:

1. Explain why software reuse is receiving increased attention,

2. Discuss why software reuse is not a new concept,

3. Define reusable components,

4. Define ad hoc reuse,

5. Define opportunistic reuse,

6. Define systematic reuse,

7. Discuss the benefits of systematic reuse,

8. Provide an example of the benefits of large scale reuse over small scale reuse,

9. Explain why exploiting reuse early in the software development life-cycle can result
in greater benefits,

10. Explain potential risks associated with software reuse,

11. List three incentives for integrating software reuse into software development
processes,

12. Explain how reuse can reduce the level of effort required during maintenance
activities.

Page A-13

SrARS-VC-BO03)/00100 29 Jawaary 1994

A.5.2.2 Lecture Content Area

Software reuse is the reapplication of domain knowledge, development experience, design
decisions, architectural structures, requirements, designs, code, and documentation from existing
systems to an emerging system in an effort to reduce the costs associated with software
development and maintenance [BIGG89]. Cost includes manpower (skills and availability),
risks to the schedule, and software and hardware budgets.

A. Why Reuse?

There are many reasons why software reuse is moving from research into practice.
The instructor will provide the students with an understanding of some of the
reasons why software reuse should be given serious attention.

1. The Demand For High Quality Software Is Increasing

Software of poor quality is very difficult and expensive to maintain [HOOP89].
Components that have been previously tested and used in a project will have
fewer errors. As a component is reused and maintained, quality and reliability
can be expected to improve [SPC92].

2. The Demand For Improved Productivity Is Increasing

The DoD plans to greatly increase productivity by the year 2000 [ANTHES92].
Reusing proven software components can help meet this demand. Taking
advantage of efforts previously spent on developing software will decrease
the resources required for development of new applications and will result in
improved productivity and reduced schedules [SPC92J, [NATO].

3. The Demand For Software Is Increasing Faster Than The Supply Of Software
Developers

United States universities are producing far fewer people with advanced
computer science degrees than are required by industry [YOUR92]. Reuse
can help overcome this deficiency. Experienced engineers can create reusable
components which encapsulate their knowledge. Less experienced engineers
(of which there are generally more) can use these components to create more
new systems [SPC92].

4. Advances In Hardware Are Driving Advances In Software

Hardware technology continues to improve at a steady rate of 20 to 30
percent annually, compounded. Hardware advances drive software application
development to take advantage of new hardware capabilities. Reuse of
existing components can reduce the time required to meet the demand for
new applications [YOUR92].

Pae A-14

STARS-VC-BO03/0)1/00 29 Jnuay 1994

5. Demand For Early Proof-of-Concept Prototypes Is Increasing

Requests for Proposal (RFPs) requiring reuse and live test demonstrations

are becoming more common. Reuse of existing components can provide
the means for creating early proof-of-concept prototypes which can be used
to demonstrate an organization's capability to meet customer requirements
[SPC92].

6. Software Reuse Is Not New

Software developers have been practicing software reuse since as far back as
the 1950's, when Wilkes, Wheeler and Gill first recognized the importance of
reusable subprogram libraries. From the 1950's through the 1980's reuse has
been researched and ideas have been formalized. What is new in the 1990's
is the methodology being developed to allow developers to leverage the most
out of reusable components [BIGG89].

B. Reusable Components

Software reuse is much more than the reuse of code components. All resources or
components resulting from the various stages of the software development process
have the capability of being reused. These components include: [CARDS93c]

I. Domain Model

A domain model defines the functions, objects, data, and relationships in a
domain. The domain model identifies the generic requirements, represents the
formal definition of the domain, and provides the general rules and principles
for operating within the domain. It indicates the boundaries of the domain, the
primary inputs and outputs and the standard vocabulary used. It can be used
to communicate desired system features between the user and the developer
of a system or group of systems.

2. Software Architecture

A software architecture represents solutions to problems in the domain. It
becomes the basis for constructing applications and mapping requirements

from the domain model to design components. A generic architecture defines
the basic software components, their interfaces, and the means of controlling
the execution of the software. It provides a high-level generic design for
a family of related applications intended to be reused to meet requirements
within the domain. The generic design eliminates the need to develop a high-
level design for each application within the domain. As a result, developers
use these representations as specifications for reusable components.

3. Product Design

Pape A-15

STARS-VC-B003/001/00 29 Jamuy 1994

A pi oduct design, which is derived from the specification of the architecture,
describes the relationship between the domain model and the work products;
it is used to develop reusable components and build systems from such
components.

4. Implementation Components

Implementation components are at the lowest level and consist of: code, test
information (plans, procedures and results), system/software documentation,
process documentation, and generated components. In reusing code, actual
code is taken from one application and reused "as is" or modified for use in
another application regardless of the system design. It includes both source
code (in-house or Government owned) and executable code (Commercial-Off-
The-Shelf (COTS) or Government-Off-The-Shelf (GOTS)).

C. Ad Hoc, Opportunistic, and Systematic Reuse

There are different methods of performing software reuse. Developers perform
reuse based on the methods and resources they have available. Students will learn
how reuse is categorized based on established procedures.

1. Ad Hoc

When there are no defined methods for performing reuse, if developers practice
reuse at all, they practice ad hoc reuse. This is informal, superficial reuse
[WART92].

2. Opportunistic

The goal of opportunistic reuse is to leverage existing software components.
It is up to the software developer to identify where reuse is possible, to locate
components that fit the needs, and to obtain and integrate them [WART92].

3. Systematic

The goal of systematic reuse is to leverage future software efforts by devoting
time up-front to creating a suitable process. Knowledge of how and when to
reuse software components within a domain is incorporated into the process.
The results of which are domain-specific reusable components [PRIETO91a].

D. Small Scale Reuse vs. Large Scale Reuse

Reuse can be categorized based on the scale it is practiced on. The instructor will
introduce the students to the concepts of small scale reuse and large scale reuse.

1. Small scale reuse is the reapplication of code: subroutines, object libraries, or
Ada packages. Developing systems reusing only small code components does

Page A-16

S'ARS-VC-BO03/001/00 29 Jana• y 1994

not help reduce the large amount of work required to develop the higher level
components such as the system architecture [BIGG89].

2. The reapplication of high-level components (e.g., requirements, architectures, de-
signs) can be viewed as large scale reuse. More significant results can be
realized when large scale reuse is practiced since reuse is introduced into the de-
velopment process early in the life-cycle, paving the way for additional reuse.
For example, if an existing set of requirements are reused, it is likely that the as-
sociated architectmue and many of the designs, code, tests, and documentation
components can also be reused [BIGG89].

E. Potential Risks Associated with Software Reuse

There are risks as well as benefits associated with software reuse. The instructor
will discuss some of the potential risks to be considered.

1. Developing components for reuse can increase up-front development costs and
time. Additional requirements may be placed on a component, such as higher
levels of maintainability, portability, and reliability [HOOP89], [BIGG89],
[BOEHM92].

2. The cost of developing a component for reuse may not be justified if the
developing organization uses the component only once [NATO].

3. The developer must consider the cost of locating, adapting, and integrating the
validated component, versus developing it from scratch [NATO], [BIGG89].

4. The reuse of software developed elsewhere imposes additional configuration
management requirements if fecdback on modifications and errors are provided
to the supplier of the component.

5. The integrity and quality of a reusable component may not be of the standards
required for the system being implemented.

6. Legacy software may not be structured to facilitate reuse. The modification of
legacy software for reuse may not be feasible due to a lack of documentation,
may be cost prohibitive, or may result in a component that is of lower quality
than the original component [YOUR92], [BOEHM92].

7. Reuse may have a negative impact on mainternance if "as is" (e.g.,
Commercial-Off-The-Shelf (COTS)) components are reused [HISS921:

a. System complexity may increase due to excessive functionality provided by
the component,

Page A-17

STARS-VC-BO03/001/00 29 Jaomry 1994

b. The component may not fit the generic architecture and therefore "stress" it,

c. Component upgrades may be significantly different than the component used
to build the system.

F. Expected Benefits of Software Reuse

There are many potential benefits of software reuse. The instructor will present
some of the most significant benefits.

1. Productivity Improvement

a. Improvements in productivity can be realized in all software development ac-
tivities (e.g., analysis, design, coding, testing, and maintenance). Developers
can produce more in a shorter period of time if they are not required to
design, develop, and test every component in its entirety [NATO].

b. Reuse can tignificantly reduce the level of effort required during mainte-
nance activities. Proven components can be expected to have fewer defects
[SPC92].

c. Conformance to standard design paradigms reduces training requirements,
thus reducing risks to schedule [NATO].

2. Increased Quality and Reliability

a. In a mature reuse program, reusable components must meet certain standaras.
Reusable components are certified and validated by component maintainers.
Using components that meet set standards improves the overall quality of a
system [YOUR92].

b. Reusable components have been proven in practice and therefore provide the
potential for improved performance and reliability.

3. Improved Competitive Edge [SPC92]

a. Using reusable components can improve an organization's ability to quickly

put together bids.

b. Reuse can improve an organization's ability to create realistic proposals and

to outbid competitors.

PsW A-18

STARS-VC-B003001/00 29 Jamiary 1994

c. Use of reusable components can increase an organization's ability to select
alternative designs to minimize cost, time, and effort, or any other factor
critical to a contract.

d. Time to market may be reduced.

A.5.3 UNIT 3 - DOMAIN-SPECIFIC REUSE

A.5.3.1 Learning Objectives

The objectives of this lecture are to provide the students with an understanding of domain-
specific reuse. Students will learn about domain engineering, the activities it encompasses, and
the products that result. They will learn how to perform the process of application engineering
using the products of domain engineering. Upon completion of this lecture students will be able
to:

1. Identify five organizations that have implemented successful domain-specific reuse

programs,

2. Define domain,

3. List the activities associated with domain engineering,

4. Define domain analysis,

5. Define generic architecture,

6. Explain how application engineering uses the products of domain engineering.

A.5.3.2 Lecture Content Area

Domain-specific reuse, which utilizes a generic architecture, is a key aspect of the DoD Software
Reuse Vision and Strategy. It is believed that domain-specific reuse can result in greater savings
than general-purpose reuse [DOD92]. A domain is an area of activity or knowledge containing
applications which share a set of common capabilities and data. Domains can be defined as
vertical or horizontal. A vertical domain is a specific class of system, such as command and
control or weapon systems. A horizontal domain consists of general software functions that are
applicable across multiple vertical domains, such as user interfaces, mathematical programs, and
graphics packages [CARDS93c]. As a domain matures, so matures the body of knowledge about
it and experience in it. A mature domain has a larger number of existing systems and domain
experts from which information can be drawn. Components which have been maintained and
refined as the domain matures will become more reliable and effective.

A. A Historical Perspective

Pop A-19

STARS-VC-BO03/001/00 29 Jamuary 1994

In response to the growing costs of software development, organizations have
realized a need to refine their development processes. The following organizations
chose domain-specific strategies as the means to achieving a reduction in the
costs associated with development. Students will gain an understanding of actual
savings being realized by existing domain-specific reuse projects.

1. Common Ada Missile Packages (CAMP):

CAMP, an early DoD reuse effort, was one of the first domain-specific reuse
projects. Its goal was to establish the feasibility and value of reusable Ada
software within the Missile Operational Flight Software domain. The project

began in 1984. Currently there are over 500 CAMP components. The CAMP
project was the first explicitly reported domain analysis experience. They
acknowledge that domain analysis is essential and that it is the most difficult
part of establishing a software reusability program. The CAMP project has
played an important role in technology transfer [FRAKES92], [PRIETO90].

2. Restructured Naval Tactical Data Systems (RNTDS):

The RNTDS project began at the Fleet Combat Direction Systems Support
Activity (with support from Paramax Systems Corporation) in 1976. The
goal of the project was to reduce costs and time associated with development
and maintenance of systems with similar functionality. One performance
specification was developed for the RNTDS domain. An initial program
baseline was derived for the main class of ships developed. Requirements for
classes which differed from the baseline were then defined as deltas, rather than
as new sets of requirements. A library was established to maintain reusable

parts. Reuse potential across RNTDS averages close to 90%. There exists
77% commonality across programs. The use of RNTDS has resulted in 26%
fewer required labor hours [GOOD92].

3. Raytheon Missile Systems Division:

This successful reuse experience in business applications reported up to 60%
reuse resulting in a 50% increase in productivity. Raytheon recognized
the redundancy in its business application systems and instituted a reuse
program. They analyzed their applications and identified three common

classes. Standard architectures were developed for each class and a library
was developed and populated for future development efforts [NATO].

4. Fujitsu's Software Development for Electronic Switching Systems (SDESS):

Fujitsu analyzed its electronic switching systems, developed a library and filled

it with reusable components. The library is staffed by domain experts, software
engineers, and reuse experts. Use of the library is mandatory. All design
review teams include members of the library staff. Fujitsu has experienced

Pape A-20

STARS-VC-BO03/001/i 0 29 Jimauy 1994

a significant improvement in the number of projects that are completed on
schedule. Before the program, 20% of electronic switching systems were
delivered on schedule. Once the project was instituted, 70% are delivered on
schedule [PRIETO91a].

5. Nippon Electronics Corporation (NEC) Software Engineering Laboratory:

NEC analyzed its business applications and identified 32 common designs
and 130 common algorithms. A library was created to house the common
components and was integrated into NEC's software development environment
which enforces reuse. NEC has reported a 6.7 fold productivity improvement
and a 2.8 fold quality improvement [NATO].

B. Domain-Specific Processes

This section is intended to provide students with an understanding of the processes
involved in domain-specific reuse. Students will learn the inputs and outputs of
domain engineering and how they feed into application engineering activities. The
instructor will explain how these activities map to common software development
models, such as DOD-STD-2167A.

1. Domain Engineering

The instructor will explain how domain engineering is the basis for reuse-
based software engineering. Domain engineering results in the organization of
domain knowledge for future software development use. Domain engineering
is performed for a family of systems. The resulting products (i.e., domain
model, generic architecture, product design, and implementation components)
are used to develop applications for various projects.

a. Domain Analysis

The process of identifying, collecting, organizing, analyzing, and repre-
senting the relevant information in a domain based on the study of existing
systems and their development histories; knowledge captured from domain
experts; underlying theory; and emerging technology within the domain
[DISA92b], [PRIETO90].

b. Architecture Development

Using the domain knowledge gathered during a domain analysis, domain
engineers develop a generic architecture. A generic architecture is the
high-level paradigms and constraints that characterize the commonalities
and variances of interactions and relationships among components in a
system. The goal is to develop architectures which support the creation of
systems that can accommodate change [MITRE92].

Pop A-21

SrARS-vc-Boo3,VOI/oO 29 imay 1994

c. Creating Reusable Components

Using the generic architecture, domain engineers create reusable compo-
nents which are catalogued into a reuse library for use by application
engineers.

d. Component Recovery

If legacy systems are to be included as reusable components in the library,
domain engineers may need to modify them to meet constraints of the
generic architecture. Often this is accomplished by creating a wrapper
around the original software [YOUR92], [CARDS92a].

e. Component Management

The DoD Software Reuse Vision and Strategy document defines the
concept of centrally managed reuse within a domain [DOD92]. It has
been recommended that this be done via a domain management office.
A domain management office will perform the domain engineering tasks
described above (a through d). In addition, the domain management
office assists application engineers in refining requirements and defining
system architectures. Results of application engineering and development
(e.g., designs, specifications, code, and documentation) are provided to the
domain management office, both incrementally during development and in
their entirety upon completion. This assists the domain management office
in updating, maintaining, and managing the domain model and associated
domain knowledge [CARDS93c].

2. Application Engineering

The instructor will explain how application engineering is performed using
the products of domain engineering [CARDS93a]. The students will gain
an understanding of the importance of identifying reuse opportunities and
providing feedback to the domain engineering process, through domain
management, during each development activity.

a. Requirements Analysis

Reusing requirements and related components during requirements analysis
activities can reduce risks. Reuse libraries and components can provide the
customer and the developer with a common basis of understanding if the
same domain engineering products are used for system specification and
system development. Deriving or reusing requirements and capabilities
from existing systems enhances reliability, lowers program risks, and
strengthens customer confidence. Additionally, the cost and schedule
of building a system may be reduced. Mapping customer requirements

Pap A-22

STARS-VC-BO03/001A)O 29 Jannaiy 1994

to existing system requirements may categorize some of the customer
requirements as implementation constraints. The generic architecture and
domain requirements may be used to propose equivalent but more generic
requirements. This process may eventually result in more portable and
reusable systems.

Students will learn that the systematic reuse of requirements, designs, and
code over multiple systems can reduce the level of effort necessary for
the requirements analysis task and result in cost and schedule savings.
Students will learn how domain-specific reuse facilitates requirements
analysis activities by supporting prototyping.

b. Design and Development

Reusing existing designs and related components during design and
development activities can reduce risks to the project, and the introduction
of errors during the development of new designs and code can be reduced.
Reused design and code components may not be bug free but they have
been used, refined, and tested so they are usually of higher quality than
new components.

Large cost and schedule impacts of designing and coding from scratch can
be reduced. Lessons learned from previous design experience in a domain
can be exploited. High personnel turnover makes this an important issue,
but systematic reuse of designs takes advantage of this previous experience.
Reuse reduces the likelihood of being stuck with a "closed" system that is
difficult to port or evolve, which can happen if generic architectures are
ignored.

c. Integration and Testing

While integration testing is still necessary, reusable components that have
been qualified for a reuse library do not have to be retested individually
if they have not been modified and meet the certification standards of
the project. If the development process is architecture-centric, component
interfaces will be well defined and integration will be straight forward.
Developers should take advantage of test materials supplied by the library
for unit and integration testing.

d. Maintenance

Reusing domain models, generic architectures, product designs, and
implementation components developed for reuse should result in systems
that are easier to maintain. "The desirable characteristics of reusable assets
are much the same as those of maintainable assets" [STARS92a]. In
addition, the reuse of existing components which are supported by their

Page A-23

STARS-VC-O0030V/001 29 Jumuy 19"4

source can greatly reduce the level of effort required for maintenance
activities, since modifications will be made for the developer.

A.5.4 UNIT 4 - DOMAIN ANALYSIS OVERVIEW

A.5.4.1 Learning Objectives

The objectives of this lecture are to provide students with an understanding of domain analysis
and to build confidence in the products produced by the domain analysis process. This unit is
not intended for students who will be performing domain analysis, but for students who will
use domain analysis products. This lesson will be complete enough to instill an awareness of
domain analysis techniques and their role in systematic software reuse. Upon completion of this
lecture the student will be able to:

1. Identify several domain analysis methodologies and describe what they have in

common,

2. Explain how a domain should be assessed for domain analysis,

3. Explain the importance of determining the boundaries (scoping) of the domain being
analyzed,

4. Define context diagram,

5. List the three main questions that should be asked in performing context analysis,

6. Explain what information is captured by domain modeling,

7. List and explain the products of domain analysis,

8. Describe how a generic architecture is derived.

A.S.4.2 Lecture Content Area

The CARDS Program is not prescribing one particular approach to domain analysis, but
references [COHEN92], [DISA92b], [HOLI89], [PRIETO90], [TRACZ92] and [WART92]
provide a solid foundation for exposition and course activities. These papers have been used to
develop this section of the course. It is assumed that the students have a working knowledge of
structured analysis and object-oriented analysis techniques.

A. Domain Analysis Methodologies

There are many domain analysis methods [HOLI89]. Each method emphasizes
different aspects of the domain analysis process, but they all describe a similar
process. The basic steps in this process include:

Pap A-24

SrA]•-VC-BON0(01/00 29 Jauary 1994

"* Scope or bound the domain,

"* Collect and organize domain information,

"• Define and classify domain specific terms,

"* Create a domain model,

" Define a generic architecture for the domain.

Most domain modeling methodologies formulate similar models and viewpoints
of the domain. These models often include feature models, functional models,
object models, and composition rules. Some of the common modeling techniques
used are entity-relationship models, state diagrams, hierarchical models and
other structured analysis and design techniques. The domain model captures
the common parts of the domain along with the differences. The data
commonality and the control flow for the functionality is captured in a functional
model. This functional model is then used to generate the requirements for a
generic architecture and the reusable components that implement the architecture
[TRACZ92]. Students will be provided with an overview of several different
domain modeling approaches used by different domain analysis methods.

1. Prieto-Diaz Domain Analysis Model [PRIETOglb]

The Prieto-Diaz Domain Analysis Model is based on a methodology for deriv-
ing specialized classification schemes. This method uses concepts from library
science, specifically literary warrant, to develop generic characterizations and
standard models. Domain terms are identified and facets are defined. Facets
are ordered by relevance and domain terms are ordered within the facets. A
semantic net is produced containing frames, representing domain concepts and
rules defining their relationships.

2. DISA Domain Analysis Guidelines [DISA92b]

The DISA method is an object-oriented approach that produces class diagrams
and assembly (whole-part) diagrams to model domain structures and their
relationships. The whole-part diagrams define the composition of the domain,
while the class diagrams describe the variations in objects. Models are
generalized and made implementation-independent.

3. Joint Integrated Avionics Working Group (IIAWG) Object-Oriented Domain
Analysis (JODA) [HOLI89]

The JODA method is an object-oriented approach that produces scenarios.
Scenarios relate special cases to the normal case. They describe the major
threads of processing from a stimulus entering the system until it completes

O A-25

STARS-VC-BO03/001/00 29 Jmwy 1994

processing. Scenarios support the utilization of the domain model and
components by relating external events to the services of the domain.

4. Feature Oriented Domain Analysis (FODA) [COHEN92]

The FODA method produces feature models. Feature models provide the end
user's perspective of the capabilities (mandatory, optional, and alternative)
of applications in a domain. Compatibility between features are defined as
composition rules.

B. Domain Identification

It is necessary to choose the right domains to analyze. A domain must be stable
and well understood to be a good candidate for domain analysis [TRACZ92].
Students will gain an understanding of how to assess whether or not a domain is
a good candidate for domain analysis. A discussion of how a domain is chosen
will occur and an illustration will be provided by the instructor. Some questions
to consider in making domain selections are:

1. Is the domain broad or narrow?

2. Is the domain mature and well understood?

3. Is the domain stable or changing continuously?

4. Is the domain strongly dependent on technology?

5. Is the domain based on well established principles, methods, and formalisms?

The instructor will discuss the importance of identifying the resources that can be
drawn upon in performing domain analysis.

1. Who do they have to work with?

2. What do they have to work with?

3. How will they verify their models?

C. Defining the Domain and Domain Modeling

In performing domain analysis, the boundaries of the domain must be properly
scoped. This process places the domain relative to other domains and defines
the external entities and data flows between the external entities and the domain.
Students will learn the importance of determining the boundaries of the domain
being analyzed and receive hanc4 '-on experience developing models.

Pap A-26

STARS-VC-BO03/001AX0 29 Jam•uy 1994

Activity: The students will create a context model and a feature-oriented domain
model for the domain being analyzed. These will not be independent exercises.
The instructor will lecture, allow for discussion and then the students will perform

exercises. This will continue throughout the activity. Students will work in
groups on the exercises. The instructor will provide the name of the domain

being modeled, a short description of the domain and the general user needs to
be satisfied by applications in this domain. The instructor, assuming the role of a

domain expert, will validate the models produced by the students.

1. Context Diagram

The students will draw a high-level block diagram showing the context of

the domain and the relationships between the entities in the domain (e.g.,

an entity-relationship diagram). The instructor will discuss the context of
the domain and the domain itself and then let each group develop their own
model. A time limit will be set on this exercise. The instructor will collect
the models developed and evaluate them at a later time. Models developed

by the instructor will be handed out when the students' models are collected.

The following types of questions will be provided to the students to guide
them through this activity:

a. What is inside the domain?

What are the classes of applications in this domain?

What primary functions/objects/things are in the domain?

What kinds of trade-offs exist in this domain?

b. What is outside the domain?

What functions/objects/things in the domain are outside the scope of the

sub-domain chosen to be analyzed?

What are similar/related domains and sub-domains?

How does this domain relate to other domains?

c. What is on the borders of the domain (input/output)?

What are the inputs to the domain?

What are the outputs from the domain?

Pap A-27

STARS-VC-BoO3f0/00 29 January 1994

Where do inputs to the domain come from?

Where do outputs from the domain go to?

2. Domain Model

The students will develop a feature-oriented domain model illustrating the
end user's perspective of the capabilities of applications in the domain
[COHEN92]. The instructor, acting as the customer, will discuss some of the
perceived capabilities of applications in the domain. The instructor will set a
time limit on this exercise. The instructor will collect the models developed
and evaluate them at a later time. Models developed by the instructor will be
handed out when the students' models are collected. The following types of
questions will be provided to the students to guide them through this activity:

a. What capabilities does the user believe domain applications have?

b. Are there capabilities not yet defined that may be required in the future?

c. What relationships exist between capabilities identified?

d. If one capability exists, which other capabilities must also exist?

e. If one capability exists, which other capabilities may not exist?

3. Domain Analysis Products

The instructor will provide the students with domain models, a dictionary
of the domain-specific terminology, a "generic" requirements specification
document, and a generic architecture. The instructor will review the domain
analysis products with the students. The instructor will point out how the
generic architecture emphasizes the "standard" concepts in the domain and
how it represents many different applications in the domain. Some generic
architectures provide interface specifications among the components of the
domain model.

The instructor will discuss how the generic architecture was developed
and how general design and implementation constraints on the architecture
were determined and applied to a domain model. In developing the
generic architecture software constraints, hardware constraints, performance
constraints and general design constraints (e.g., fault tolerance, security, and
safety) are all considered. The students must understand the structure of the
generic architecture in order to use it.

Pap A-28

STARS-VC-B003•01/00 29 Jamay 1994

A.5.5 UNIT 5 - SOFTWARE REUSE LIBRARIES

A.5.5.1 Learning Objectives

The objectives of this lecture are to introduce the students to reuse libraries, library mechanisms
and certification and qualification techniques. Students will receive hands-on experience using
a reuse library. Upon completion of this lecture the student will be able to:

1. Explain why the reuse library is a tool for reuse and not a solution,

2. Define component-based library,

3. Define model-based library,

4. List three classification methods and describe them,

5. Describe when a particular form of search and retrieval is beneficial,

6. Explain component certification,

7. Explain component qualification,

8. Define common metrics,

9. Define domain metrics,

10. Explain how system composition tools work,

11. Explain how system generation tools work,

12. Navigate through a reuse library.

A.5.5.2 Lecture Content Area

A. The Library - A Reuse Tool

Software reuse libraries are a tool for reuse; they are not the reuse solution. The
instructor will discuss how most individuals maintain their own pool of reusable
components and how compilers are equipped with their own set of reusable
libraries. The students will gain an understanding of how the software reuse
library concept is now being extended to include publicly accessible libraries of
life-cycle artifacts. This extension is essential if the full potential of software
reuse is to be realized. The greatest reuse savings can be seen when a component
is reused many times, across projects. organizations may benefit by making their

Pao A-29

STARS-VC-BOO3A/0010 29 imary 1994

own components available internally to all projects and by acquiring components
available externally [NATO].

B. Types of Libraries

Reuse libraries can be classified by the methods and techniques used to organize
components. A library is either component-based or model-based [WAL92].
Students will learn how libraries of these two classes are similar and how they
differ.

1. Component-Based Libraries

Component-based libraries are similar to book libraries. They can be thought
of as software warehouses. Component-based libraries are frequently general-
purpose reuse repositories. However, the component-based approach can
be used effectively to support domain-specific reuse as well. As the name
suggests, the central focus of a component-based library is the component.
Library users search for individual reusable components. Library support
focuses on developing efficient and effective search and retrieval mechanisms.

2. Model-Based Libraries

Model-based libraries are organized around the principle that what matters
in a repository is the context in which reusable software components are
used and the relationships among components. As the name suggests,
the focus of a model-based library is the model. Models can include
models of requirements, architectures, design decision and rationales, and
the software which "implements" these models. Encoded in the model is the
organization's "corporate memory" of the domain. The model-based library
can facilitate the variant composition of subsystems tailored to application-
specific requirements.

C. Library Mechanisms

There are many different types of library classification, search, and retrieval
methods. Students will gain an understanding of some of the common methods
and how they differ.

1. Classification Methods

"Classification is grouping like things together. All members of a group, or
cuass, produced by classification share at least one characteristic that members
of other classes do not. Classification displays the relationships among things
and classes of things. The result is a network or structure of relationships"
(BIGG89]. The instructor will develop a lecture that presents a brief overview
of various classification methods (e.g., Dewey decimal, semantics, faceted,
indexed, and keywords) [STARS92b], [PRIETO9lb], [FRAKES90].

Page A-30

STARS-VC-BO03/001/00 29 Jamukry 1994

2. Search and Retrieval Methods

The instructor will provide the students with an overview of various search and
retrieval methods (e.g., full text searching, facet searching, keyword search-
ing, knowledge-based searching, and browsing). Students will learn what the
benefits of different methods are for different environments.

D. Library Component Certification and Qualification

The largest resistance to reuse comes from developers who do not trust reusable
components. Developers must be able to trust that componunts have been
properly developed and that using a previously developed component does not
add significant risks to a project and may reduce or eliminate many risks. Library
component certification and qualification efforts are being developed to ensure
developers that components can be trusted. Component certification is the process
of determining if a component being considered for inclusion in the library meets
the requirements of the library and passes all testing procedures. Evaluation takes
place against a common set of criteria [ASSET92], [RAPID91]. Component
qualification is the process of determining if a potential component meets all of
the requirements and constraints of a domain's generic architecture. Evaluation
takes place against domain criteria [CARDS02f], [PRISM92a].

Both common metrics and domain metrics are considered in evaluating com-
ponents for inclusion in a domain-specific rusc hlbrary. The common and do-
main metrics evaluations will lead to a recommendation from the evaluators as
to whether or not a component should be accepted for inclusion in the library.
Students will gain an understanding of how reusable components are evaluated
for inclusion in a domain-specific reuse library.

1. Common Metrics

Common metrics are criteria used to evaluate components regardless of
domain. Example criteria for common metrics are reliability, maintainability,
portability, and security.

2. Domain Metrics

Domain metrics are criteria used to evaluate components based on domain
requirements, architectural constraints, and implementation constraints. Ex-
ample criteria for domain metrics are form, fit and function [PRISM92a]:

a. Form

The conformance of a product to the component interface definition, as
defined by the generic architecture.

b. Fit

Page A-31

STARS-VC-Bn001/A0 29 Jamiy 1994

The conformance of a product to performance constraints, fault tolerance
requirements, and security, requirements, as defined by the generic
architecture.

c. Function

The conformance of a product to the component's functional capabilities,
as defined by the generic architecture.

E. Library Supported Tools

Reuse libraries may provide tools to assist the application engineer in developing
systems, subsystems, and prototypes. These tools can be categorized as either
composition-based or generation-based. Students will gain an understanding of
how these tools operate.

1. System Composition Tools

System composition tcols can be used by application engineers to construct
new applications from previously developed or newly generated parts. This
is typically done by identifying, understanding, evaluating, and selecting
appropriate components and integrating them to meet specific system needs.
System composition tools are supported by domain models which provide
reusable components, a generic architecture and embedded domain knowledge
[STARS92c].

2. System Generation Tools

System generation tools can be used by application engineers to develop new
applications or subsystems through the use of parameterization or specification
languages. A generation tool accepts an application's specifications and
generates components for the target system [STARS92c].

F. Using a Domain-Specific Library

Activity: The instructor will present a domain-specific software reuse library
which corresponds to activity exercises of the other units. The instructor will
provide the students with an easy to follow reference sheet for accessing and
using the library. The instructor will review this in detail with the students.
Students will learn to navigate through the library.

A.5.6 UNIT 6 - APPLICATION ENGINEERING

A.5.6.1 Learning Objectives

The objectives of this lecture are to provide students with a hands-on experience performing
application engineering using the products of a domain engineering effort and a reuse library. The

Page A-32

STARS-VC-BO03/001/00 29 Jamuary 1994

instructor will guide the students through application engineering activities. During each activity,
the instructor will emphasize considerations students must make in light of reuse and discuss
how the activity maps to common software development models (e.g., DOD-STD-2167A). This
unit assumes that domain engineering has been performed for the domain to be used for the
activities and that domain engineering products exist. The instructor will have the students
consider different options available in the event certain domain engineering products or tools
are not available. The CARDS Engineer's Handbook [CARDS93a] should be used for guidance
through these activities. Upon completion of this lecture the student will be able to:

1. Define prototyping,

2. Explain how the domain-specific library and generic architecture can be used in
defining and clarifying application requirements,

3. Describe how the generic architecture is instantiated,

4. Explain how an architecture-centric reuse process facilitates integration,

5. Explain why testing efforts may be greatly reduced using proven, unmodified,
reusable components,

6. Explain why maintenance efforts may be greatly reduced using the products of
domain engineering.

A.5.6.2 Lecture Content

This section will use instructor-provided domain models, system requirements and a domain-
specific library to illustrate and support the development of a system architecture and a system
prototype. This is an intensive hands-on part of the course.

A. Instantiation of the Generic Architecture

Activity: The instructor will provide the students with domain models, system
requirements for the application to be developed, a generic architecture, and
a domain-specific software reuse library. The student will define a specific
application architecture. This activity will illustrate how domain engineering
products can be used to define and clarify application requirements. The instructor
will act as an expert in the domain being modeled and as the customer for
the application being developed. Using the generic architecture provided by the
instructor, students will use the domain-specific software reuse library to further
define and clarify the customer requirements. The students will use the browsing
mechanism provided by the library to search for information. The instructor will
explain how this activity differs depending on the type of library used (component-
based or model-based), and discuss how this activity maps to development phases
of common models, such as DOD-STD-2167A's requirements analysis phase.

Page A-33

STARS-VC-B003/001/0 29 Jnuay 1994

1. Explore the Domain-Specific Software Reuse Library

a. What is the application being defined in the requirements?

b. How will the components contained within the software reuse library help

shape the application design and decision making?

c. Which components will be likely candidates for reuse?

2. Clarify the Requirements

Using the software reuse library, the students and the customer (instructor)
will clarify ambiguous requirements and isolate differences between the
requirements and the generic architecture.

a. Do the requirements correspond to the generic architecture?

b. Are there features or functions specified in the requirements that are not
represented in the generic architecture?

c. Are there features or functions in the generic architecture that have been left
out of the requirements that must be included?

d. Have all constraints on the system been adequately specified in the
requirements?

e. Do the requirements include conflicts between features (mutual exclusion)
which have not been clearly identified?

f. Do the requirements include relationships between features which have not
been clearly identified?

g. Does development experience exist for a component or project which would

suggest the requirements be modified in some way?

3. Revise the Requirements

The students and the instructor will create a new set of requirements by

mapping all of the issues identified above onto the original requirements.

4. Instantiate the Generic Architecture

a. For each set of alternative features or functions, choose those which

correspond to the application requirements.

Papg A-34

SrARS-VC-B003/001/00 29 Jamaay 1994

b. For each optional feature or function, decide if it will be included in the
application's archi -e.

c. What features do noE exist in the generic architecture? (Note: These are the
components which do not exist in the software reuse library and must be
developed or obtained elsewhere.)

B. Creating a Prototype

The software components contained within the software reuse library have been
designed in a manner that enables them to be reused without detailed knowledge
of the code itself. These components can be assembled to create a prototype.
Prototyping is the acquisition of softwar" -'.ct knowledge through disciplined
experimentation. This includes both ,., .ory prototyping for information
gathering, and production prototyping, wh, - the prototype is continuously
improved until it becomes the final product [CA -71,S90]. The instructor will
discuss how different reuse tools facilitate prototyping and identify different
phases of common development models in which prototyping can be exploited
(e.g., DOD-STD-2167A's requirements analysis, design, and implenientation
activities).

Activity: The students will create a prototype using the software reuse lila.ary,
the revised requirements and the application architecture defined in the previous
section. Students will produce prototypes which compile and run using available
reuse tools (e.g., system composition tools, system generators).

1. Collect Components

Using the software reuse library the students will collect components.

a. What are the system requirements?

b. What are the constraints on the system?

c. Are composition constraints recognized that were not identified earlier?

2. Record Issues, Trade-offs, and Design Rationale.

In cases where the students have to choose between several reusable
components, the student will provide a rationale for why one was chosen
over another.

a. What were the trade-offs?

b. Did this choice drive future decisions?

Pape A-35

STARS-VC-B003/0I0/00 29 Jmary 1994

c. Did past decisions influence this choice?

3. Link Artifacts

The students will link the components collected from the software reuse
library and present a brief demonstration of the prototype to the instructor.
The instructor, acting as the customer, will evaluate the prototype and the
associated component choice rationale. The instructor will discuss these with
the students.

a. Are there problems associated with interfacing any two components taken
from the library?

b. What input must be supplied?

c. How much of the system was prototyped?

d. Was it necessary to relax requirement constraints to create the prototype?

4. Integration Testing

The instructor will discuss integration testing with the students. The instructor
will explain that it may not be necessary to test individual library components
that have not been modified.

a. Does the prototype function as required?

b. Does the prototype perform at required levels?

c. What parameters need to be modified to meet system performance

requirements?

5. Prototype to Actual System

a. What components need to be developed and integrated?

b. What changes to the prototype may the customer request?

6. Component Adaptation

a. What components require adaptation?

b. Are the required changes small?

PaWe A-36

STARS-VC-BO03/0i/00 29 Jmmwy 1994

c. Will it be cost effective to adapt the component instead of developing it from
scratch?

d. Will the development of an interface wrapper fill the need?

7. Maintenance

a. How will the domain engineering effort help to reduce potential maintenance
requirements?

b. Which components have a greater probability of requiring maintenance?

c. Are anticipated maintenance requirements high or low for the entire system?

d. How do anticipated maintenance requirements compare to maintenance

requirements for a system developed without reusing proven components?

A.5.7 UNIT 7 - REUSE BARRIERS

A.5.7.1 Learning Objectives

The objectives of this lecture are to provide students with an understanding of the barriers they
may encounter in attempting to incorporate reuse into their current development process and
with suggestions on how to overcome the barriers. Upon completion of this lecture, the student
will be able to:

1. List actual as well as potential barriers to reuse,

2. Identify current actions underway to address and resolve barriers,

3. Offer solutions to actual and potential barriers, and an approach to accomplish

resolution.

A.5.7.2 Lecture Content Area

Reuse calls for a significant change in software development practices. The shift to software
engineering processes which incorporate reuse principles must be addressed at multiple levels
from management through technical personnel. Reuse will not be successful until it becomes an
inherent part of the software development process. Barriers to reuse exist at all levels. However,
more solutions are being recognized as reuse concepts and processes mature.

A. Barriers to Reuse

Barriers to reuse can be categorized into three fundamental groups. This

categorization can sometimes be ambiguous. Not all barriers to reuse fit exactly

Page A-37

srARS-VC-BO03/001/00 29 Jamhmy 1994

into one category. Students will gain an understanding of the different types of
barriers they may encounter.

1. Technical

Technical barriers may affect the actual development of software. An example
of a technical barrier is the nonavailability of a component.

2. Programmatic or Non-technical

Programmatic, or non-technical, barriers are sometimes loosely referred to as
"management issues." Examples of programmatic barriers to reuse include a
lack of cost model availability, and lack of education in reuse strategies and
techniques which impacts developers' ability to incorporate reuse into software
development.

3. Cultural

Cultural barriers exist due to the internal environment and the psychodynamic
and demographic characteristics of the system and software engineers them-
selves. An example of a cultural barrier is the lack of trust developers may
have for components they did not create. System and sortware engineers will
be confronted primarily with technical barriers to reuse. However, program-
matic and cultural barriers can sometimes influence the sphere of operations
and the attitudes of colleagues in the environment in which engineers must
work and are therefore presented in this unit.

For system and software engineers, overcoming barriers to reuse can be
difficult. For example, a skilled engineer may know what component is
needed, but may not know where to find it. In this case, a solution would
involve gaining access to one or more reuse libraries. There is not a solution
to every technical barrier to reuse; however, many barriers do have possible
solutions. The types of barriers an engineer will encounter depend upon the
engineer, the organization, and available technology. Following are some
examples of barriers an engineer may encounter. Additional examples can be
found in [CARDS93a], [CARDS93c], [SPC92], [YOUR92], and [HOOP89].

B. Technical Barriers

1. The software reuse library may not depict the current state of the domain. The
reuse library must be constantly updated with feedback from projects where an
application was built using new technology. Engineers should keep abreast of
latest technology and their implications/ramifications on applications within the
domain.

Pag A-38

STARS-VC-B003/O01/00 29 Jammry 1994

2. There may be inconsistencies and ambiguities in terminology and how domain
components are classified in the library. Domain management offices will help
to ensure the use of glossaries, formal languages and models, and domain
dictionaries.

3. Knowledge representations for generic architectures may not be adequate. De-
velopers must ensure that the architectures chosen meet current and projected
user requirements.

4. Using reusable code components (GOTS and COTS) may introduce risks if they
have not been developed and tested with the new application in mind, and if
they contain system and compiler dependencies. Careful evaluation of compo-
nents for the target system, extra unit testing, and thorough integration testing
can reduce this risk.

5. Use of COTS and GOTS components can increase risk due to cost of license and
maintenance agreements, the potential that support for the component may be
dropped, and the possibility that the component may provide more than needed.
These factors must be weighed in choosing components to fill an architecture.

6. Improper integration of reusable software components can increase risks. Reuse
of an existing generic architecture which identifies component interfaces can
help ensure that components are chosen and created to properly integrate.

7. A reusable component may not easily adapt to the new application environment.
However, application environment simulation can be used to verify that the
component will adapt to the new application.

8. Domain engineering products may be difficult to locate. The expansion of, and
interoperability between, existing libraries such as CARDS, DSRS, ASSET, etc.,
will help overcome this barrier. There exist several centers which distribute
information on available reuse programs, including ASSET, the Ada Joint Pro-
gram Office (AJPO), and the National Technology Transfer Center (NTTC). If
domain engineering has not been performed for the organization's product line,
the organization should consider instituting a domain engineering program for
the domain in question. The program may include the establishment and
maintenance of a reuse library.

C. Programmatic Barriers

1. The cost of employing reuse may be prohibitive. However, the Government is
taking the initiative to identify domains for which employing reuse will pay

Page A-39

STARS-VC-BOO3/001/0O 29 L-mary 1994

long-term dividends. The Government is setting up the necessary infrastructure
to enable successful reuse in building future systems in these domains.

2. Reuse activities may conflict with the organization's standard development
process and methodology. Reuse must be made an inherent part of the software
development process. Engineers will not be successful trying to practice reuse in
isolation.

3. Reuse activity may be low because engineers are not trained in utilizing reusable
components or recognizing opportunities to apply them. Part of the reuse infra-
structure the Government is developing focuses on providing training courses,
such as this one, to teach engineers how to incorporate reuse into their current
software development processes.

4. Management may not become involved or provide support for reuse. Continued
education in the potential benefits of reuse (cost and schedule savings, produc-
tivity and quality improvements), increased collection and analysis of metrics
illustrating the benefits of reuse, and a "phase-in" approach to reuse will help
generate increased involvement and support. Management must "buy into"
reuse. Effective communication must be instituted, and a flow and exchange of
ideas and information in both directions must be continually fostered.

D. Cultural Barriers

Engineers may not trust components developed for reuse. They may believe that
they can produce components that are better. They may believe that reusing
components will remove the creative element from their work. Management must
determine what kinds of cultural problems can be anticipated and why. They
must understand what kinds of rewards are effective motivators, and how best
to institute implementation of reuse. In the long-term, increased knowledge and

experience of personnel will help overcome cultural bias. Continued maturity
of reuse in the engineering/development process together with the continued
development of reusability standards, libraries, and tools will build trust in the
methods. Reuse successes and positive user feedback will instill confidence in
the processes and products produced.

A.6 COURSE IMPLEMENTATION QUESTIONS AND ANSWERS

1. What is a reasonable size for the activity projects?

Due to the limited time of the course, small projects will be presented. The project
should not be an example from the domain in which the students work. This will
help to keep the students focused on the methods being presented and not on the
example itself. The examples will be small and yet large enough to expose the

Page A-40

SARS-VC-BOMMI)OO 29 Januy 1994

students to all the concepts and methods they need to incorporate software reuse
into their software development processes.

2. What is the role of the instructor in the course?

The instructor must provide project description, assistance in assignments, guid-
ance during project executions, lectures on software reuse, software reuse libraries,
domain analysis, generic architecture development, application architecture devel-
opment, reuse tools, and perform activity evaluations. Instructor intervention may
be needed to direct students in the right direction during activity exercises. To
minimize the risk of student failure during the activity exercises, it is necessary for
the instructor to be very comfortable with the exercises being presented and their
solutions. The instructor will be prepared for students to encounter problems.

3. How are the activity exercises evaluated?

Upon completion of each activity, the instructor will review the work of the
students. The activities will not be graded. The instructor will provide the students
with comments, where appropriate, indicating the areas they need to give more
attention to and those they did well. Upon returning the activities to the students,
the instructor will also provide the students with a "solution." The instructor will
discuss the activity exercise with the students before moving on to the next activity
to ensure that all students are relatively comfortable with the methods presented
in the previous activity. Each activity builds upon the products of the previous
activity.

4. How can the instructor ensure all students get off to a fast start on the activity
exercises?

Preliminary preparation for the activity exercises by the instructor is critical to the
overall success of the course. All materials required by the students to complete
the exercises must be prepared and thoroughly reviewed by the instructor. The
instructor must be certain that all required equipment is present and operational. A
fast start is essential if the students are to complete the activity assignments in the
given time frame. To minimize the time it takes for a student to get started on the

assignment, the instructor will have all materials ready for the student on the first
day of the course. The students will then have some time to consider the exercise
before beginning it. The instructor will be prepared to give considerable help to
all students in the critical first key steps of the activity exercises. Specifically, the
instructor may choose to make some of the activities group exercises and some
individual exercises. This will keep slower students from falling too far behind.

Pag A-41

STAIS-VC-D0030NBO J0 29 Jam•ay 1994

A.7 POSSIBLE ACTIVITY EXERCISES

Following is a list of ?ossible subject domain areas for activity exercises. The size of the

domain chosen for w-,urse activities should be based on the amount of time allotted for activity

completion.

1. Automatic Teller Machines (ATMs)

2. Banking Systems

3. Hospital Patient Monitoring Systems

4. Text Editors (Word Processing Systems)

5. E-mail Systems

6. Calculator Programs

7. Menu Manager Systems

8. Elevator Systems

9. Walkman Devices

10. Warehouse Systems

11. Flight Reservation Systems

12. Message Processing Subsystems

13. Personnel Records Management

14. Command Centers

15. Missile Systems

16. Avionics Systems

A.8 HANDOUT - COURSE EVALUATION FORM

Please complete the following course evaluation form.

1. Name (Optional):

PaWe A-42

STARSNOVCBOOWIMV)I 29 Jamazy 1994

2. Organization (Optional):

3. I perform the following tasks as part of my job responsibilities (circle all that apply):

Specify systems/software

Design systems/software

Develop systems/software

Test systems/software

Verify systems/software

Control systems/software

Manage systems/software

Other

4. I will be able to apply the course content to my job duties (Y/N).

5. Before I attended this course, I was familiar with:

Table 5-1

Novice Knowledgable Expenenced Expert

Structured Ana~ysis

Model-Based Engineering

Domain Analysis

Software Reuse Libraries

Domain-Specific Software Reuse Libraries

Generic Architecture Development

System Engineering

Software Engineering

6. The length of this class was:

Too Long

Too Short

Just Right

7. The material covered was:

Too Specific

Too General

Page A-43

STARS-VC-BO03/001100 29 Juary 1994

Adequate

8. The time given for each unit was adequate: (Y/N)

If no, indicate which units did not provide adequate time.

9. I had plenty of opportunity to participate and ask questions: (Y/N)

10. Were your questions adequately answered? (Y/N)

11. The examples helped clarify the concepts:

Very Much

Moderately

Not at All

12. The course handouts were:

Very Useful

Moderately Useful

Not Useful

13. I would recommend attendance to my colleagues: (YIN)

If no, why not?

14. I have attended other software reuse training classes or seminars: (Y/N)

If yes, which ones?

15. I would be interested in attending other software reuse training seminars: (Y/N)

16. I would be interested in receiving additional information on software reuse: (YIN)

17. I believe domain-specific software reuse is very valuable in the development of
software systems: (Y/N)

18. The training facilities and equipment were adequate: (Y/N)

19. The instructor's knowledge of course material was:

Poor

Fair

Good

Pop A-44

STARS-VC-B003/001/0 29 Jmiury 1994

Excellent

20. The instructor's ability to explain the course material was:

Poor

Fair

Good

Excellent

21. The instructor's preparation of course material was:

Poor

Fair

Good

Excellent

22. Additional Comments:

A.9 HANDOUT - GLOSSARY

Ad-Hoc Reuse -

Reuse is practiced ad-hoc when there are no defined methods for performing reuse.

Application -

A system which provides a set of general services for solving some type of user
problem.

Architectural Constraints -

The definition of relationshipsfmterfaces among components of a generic archi-
tecture.

Architecture-Centric Reuse -

Reuse is architecture-centric when the component development process and the
application development processes are based on a generic architecture. The goal
of an architecture-driven process is to achieve black-box reuse.

Black-box Reuse -

Black-box reuse is achievod when application engineers can compose systems
by plugging together different reusable components based on an application's
requirements.

Pigs A-45

STARS-VC-BO03/001/00 29 JmrUy 1994

Certification -

The process of determining that a component being considered for inclusion in
the library meets the requirements of the library and passes all testing procedures.

Common Metrics -

Criteria used to evaluate components regardless of domain. Example criteria for
common metrics are reliability, maintainability, portability, and security.

Component-Based Library -

Component-based libraries are similar to book libraries. They can be thought of
as software warehouses. The central focus of a component-based library is the
component.

Domain -

An area of activity or knowledge containing applications which share a set of
common capabilities and data.

Domain Analysis -

The process of identifying, coUecting, organizing, analyzing, and representing
the relevant information in a domain based on the study of existing systems and
their development histories, knowledge captured from domain experts, underlying
theory, and emerging technology within the domain.

Domain Engineering -

An encompassing process which includes domain analysis and the subsequent
construction of components, methods, tools, and supporting documentation that
address the problems of system/subsystem development through the application
of the knowledge in the domain model and software architecture.

Domain Metrics -

Criteria used to evaluate components based on domain requirements, architectural
constraints, and implementation constraints.

Domain Model -

A definition of the functions, objects, data, and relationships in a domain,
consisting of a concise representation of the commonalities and differences of
the problems of the domain and their solutions.

Domain-Specific Reuse -

Pape A-46

STARS-VC-BOO3j001/00 29 Janiary 1994

Reuse that is targeted for a specific domain (as opposed to reuse of general purpose
work products). It typically involves reuse of larger workproducts (subsystems,
architectures, etc.) than general purpose reuse.

Domain-Specific Software Architecture -

A software architecture that has been generalized based on actual and projected
commonalities of systems in a domain. May also be referred to as a generic

architecture.

Facet -

A perspective, viewpoint, or dimension of a particular domain which can be
represented as a class.

Generic Architecture -

High-level paradigms and constraints that characterize the commonality and
variances of the interactions and relationships between the various components in

a system. May also be referred to as a domain specific software architecture.

Horizontal Domain -

The knowledge and concepts that pertain to a particular functionality of a set of
software components that can be utilized across more than one application.

Implementation Constraints -

Constraints to be satisfied when components of a generic architecture are
composed into specific systems.

Interoperability -

The ability of two or more systems to exchange information and to mutually use

the information that has been exchanged.

Knowledge Blueprint -

A flexible plan to transition knowledge to the community.

Large Scale Reuse -

Large scale reuse is the reapplication of high-level components (e.g., requirements,
architectures, designs).

Library-Assisted Reuse -

Reuse is library-assisted when there exists a library to support the application
domain. There may be more than one library and they may be interconnected.

Pa A-47

SrARS-VC-BO03/001/00 29 Jinmay 1994

Megaprogramming -

Megaprogramming is achieved when systems and subsystems can be viewed as
black-boxes that meet certain requirements. These systems can be reused in
building other systems without the developer requiring detailed knowledge of the
system's internal structures.

Model-Based Library -

Model-based libraries are organized around the principle that what matters in a
repository is the context in which reusable software components are used and the
relationships among components. The focus of a model-based library is the model
(requirements, architectures, design decisions and rationales) and the software
which implements these models.

Opportunistic Reuse -

Reuse is practiced opportunistically when it is up to software developers to identify
when reuse is possible, locate reusable components, and integrate them.

Process-Driven Reuse-

Software reuse is process-driven when it is an integral and transparent part of
both the software engineering process and the broader acquisition process.

Prototype -

A model of a system (sometimes scaled down, but accurate) used to verify the
operatonal process prior to building a final system.

Qualification -

The process of determining that a potential component is appropriate to the library
and meets all quality requirements.

Reusable Components -

Domain model, software architecture, product design, and implementation
components (source code, test plans, procedures and results, and system/software
and process documentation).

Reuse Library -

A library specifically designed, built, and maintained to house reusable compo-
nents.

Small Scale Reuse -

Page A-48

STARS-VC-BO03/001/00 29 Jammry 1994

Small scale reuse is the reapplication of code: subroutines, object libraries, or
Ada packages.

Software Architecture -

A specification for the assemblage of components.

Systematic Reuse -

Reuse is practiced systematically when there exist defined procedures for
leveraging future software projects. Efforts are devoted up-front to creating a

suitable process.

Vertical Domain -

The knowledge and concepts that pertain to a particular application domain.

Wrapper -

A component which allows integration of components. A wrapper is used when
some capabilities required of the component are not provided by the product or
when the product's interface does not completely match that of the component.

A.10 HANDOUT - ACRONYMS

AJPO Ada Joint Program Office

ASSET Asset Source for Software Engineering Technology

BS Bachelor of Science

CAMP Common Ada Missile Packages

CARDS Central Archive for Reusable Defense Software

CIM Center for Information Management

COTS Commercial-Off-The-Shelf

DISA Defense Information Systems Agency

DoD Department of Defense

DSRS Defense Software Repository System

DSSA Domain Specific Software Architecture

FODA Feature-Oriented Domain Analysis

GOTS Government-Off-The-Shelf

Pap A-49

STARS-VC-B003/001/00 29 imaty 1994

MS Master of Science

NEC Nippon Eectronics Corporation

NTTC National Technology Transfer Center

PRISM Portable, Reusable, Integrated Software Modules

RAPID Reusable Ada Packages for Information System Devel-
opment

RFP Request For Proposal

RIG Reuse library Interoperability Group

RLF Reusability Library Framework

RNTDS Restructured Naval Tactical Data Systems

SDESS Software Development for Electronic Switching Systems

STARS Software Technology for Adaptable, Reliable Systems

A.11 HANDOUT - BIBLIOGRAPHY

[ANTHES92] U.S. Software Reuse Plan Draws Criticism, Computer
World, G. Anthes, Aug 92.

[ASSET91] ASSET Set-Up Plans, Software Technology for Adapt-
able, Reliable, Systems (STARS) Program, 9 Mar 91.

[ASSET92] Criteria and Implementation Procedures for Evaluation
of Reusable Software Engineering Assets, ASSET, The
National Software Technology Repository, IBM, Mar
92.

[BIGG89] Software Reusability, Volume 1, Concepts and Models,
ACM Press, T. J. Biggerstaff, A. J. Perlis, 89.

[BOEHM81] Software Engineering Economics, Prentice Hall, B.
Boehm, 81.

[BOEHM92] Megaprogramming (preliminary version), STARS 92, On
The Road to Megaprogramming, SEE, Vol. 3, DARPA,
B. Boehm, W. Scherlis, 92.

[CARDS90] ProtoTech: Process Synerly With STARS, STARS 92,
On The Road to Megaprogramming, Vol. 1, W. Carlson,
8 Dec 92.

P4p A-50

STARS-VC-BO03/001/00 29 JamUk 1994

[CARDS92a] Direction Level Handbook, Central Archive for Reusable
Defense Software (CARDS), STARS-AC-04104/001/00,
20 Nov 92.

[CARDS92b] Library Operations Policies and Procedures, Central
Archive for Reusable Defense Software (CARDS),
STARS-AC-4109/001/O0, 25 Nov 92.

[CARDS92c] Command Center Domain Model Description, Central
Archive for Reusable Defense Software (CARDS), Draft
- STARS-AC-04110/001/00, 25 November 92.

[CARDS92d] Library Development Handbook (LDH), Central Archive
for Reusable Defense Software (CARDS), STARS-AC-
04109/001/00, 25 November 92.

[CARDS93a] Engineer's Handbook, Central Archive for Reusable
Defense Software (CARDS), STARS-VC-BO08/001/00,
30 September 93.

[CARDS93b] Component and Tool Developer's Handbook, Central

Archive for Reusable Defense Software (CARDS),
STARS-AC-04114/001/00, 15 Mar 93.

[CARDS93c] Acquisition Handbook, Central Archive for Reusable

Defense Software (CARDS), STARS-AC-04105/001/00,
30 Apr 93.

[CARDS94a] Technical Concept Document, Central Archive for
Reusable Defense Software (CARDS), STARS-VC-
B009/001/00, 28 Feb 94.

[CARDS94b] Training Plan, Central Archive for Reusable Defense
Software (CARDS), STARS-VC-B003/001/00, 29 Jan
94.

[COHEN91] Application of Feature Oriented Domain Analysis to
Army Movement Control Domain, Software Engineering
Institute, (SEI), CMU/SEI-91-TR-28, S. Cohen, J. Stan-
ley, A. Peterson, R. Krut, 30 Sep 91.

[COHEN92] Modeling Software Reuse Technology: Feature Ori-
ented Domain Analysis (FODA) - Tutorial Slides, SEI,
Carnegie Mellon University, May 92.

[DISA92a] Software Reuse Initiative Program Overview, DoD
Reuse Initiative, Defense Information Systems Agency

Pae A-51

STARS-VC-BO03/001/00 29 Jamary 1994

(DISA)/Center for Information Management (CIM),
Presented by SofTech, Inc., 2 Nov 92.

[DISA92b] DoD Domain Analysis Guidelines, DoD Software
Reuse Initiative, Defense Information Systems Agency
(DISA)/Center for Information Management (CIM),
May 92.

[DISA92c] Department of Defense, Center for Software Reuse
Operations, Training Plan, 27 Jul 92.

[DoD92] DoD Software Reuse Vision and Strategy, CrossTalk, Oct
92.

[FRAKES90] Representing Reusable Software, Information and Soft-
ware Technology, Vol. 32, No. 10, W. B. Frakes, P. B.
Gandel, 10 Dec 90.

[FRAKES92] Software Reuse, Domain Analysis, and Reengineering,

W. Frakes, R. Prieto-Diaz, R. Arnold, 92.

[GOOD92] Restructured Naval Tactical Data System (RNTDS) An
Example of Applying Megaprogramming Concepts, Stars
92, T. J. Goodall, 8 Dec 92.

[HESS90] A Domain Analysis Bibliography, Software Engineering
Institute (SEI), CMU/SEI-90-SR-3, J. Hess, W. Novak, P.
Carroll, S. Cohen, R. Holibaugh, K. Kang, A. Peterson,
Jun 90.

[HISS92] Domain-Specific Reuse for Post-Deployment Mainte-
nance, Central Archive for Reusable Defense Software
(CARDS), S. Hissam, 92.

[HOLI89] Joint Integrated Avionics Working Group (JIAWG) Do-
main Analysis Concepts, R. Holibaugh, 19 Dec 89.

[HOOP89] Software Reuse Guidelines, U.S. Army Institute for
Research, J. W. Hooper, R. 0. Chester, ASQB-GI-90-
015, Dec 89.

(MrTRE92] A New Process for Acquiring Software Architecture,
The MITRE Corporation, T. F. Saunders, Dr. B. M.
Horowitz, M. L. Mleziva, M920000126, Nov 92.

[NATO] Software Reuse Procedures, NATO Communications and
Information Agency, Vol. 3 of 3.

Pae A-52

STARS-VC-BO03/001/00 29 Jammiry 1994

[PAYTON92] Domain-Specific Reuse, Context, Accomplishments and
Directions, STARS 92, On the Road to Megaprogram-
ming, Vol. 2, 8 Dec 92.

[PRES87] Software Engineering A Practitioner's Approach, Second
Edition, R. Pressman, McGraw-Hill Book Company, 87.

[PRIETO90] Domain Analysis: An Introduction, ACM SigSoft, Soft-
ware Engineering Notes, R. Prieto-Diaz, Vol. 15, No. 2,
Apr 90.

[PRIETO91a] Making Software Reuse Work: An Implementation
Model, First International Workshop on Software
Reusability, R. Prieto-Diaz, 5-6 Jul 91.

[PRIETO91b] Implementing Faceted Classification for Software Reuse,
Communications of the ACM, Vol. 34, No. 5, R. Prieto-
Diaz, May 91.

[PRISM92] Qualification Methodology Report, Portable Reusable,
Integrated Software Modules (PRISM) Program, 14 Jul
92.

[RAPID] The RAPID Center Reusable Software Components
(RSCs) Certification Process, U.S. Army Information
Systems Software Development Center, Washington, J.
Piper and W. Barner.

[RAPID91] RAPID Qualifying Software Components: Reusability
Metrics, Software Reuse and Re-Engineering Conference
for the National Institute for Scftware Quality and
Productivity, A. Nieder, 30 Apr 91.

[SE192] A Reuse-Based Software Development Methodology,
CMU/SEU-92-SR-4, K. Kang, S. Cohen, R. Holibaugh,
J. Perry, A. Peterson, Jan 92.

[SPC92] Reuse Adoption Guidebook, Software Productivity Con-
sortium, SPC-92051-CMC, Version 01.00.03, Nov 92.

[STARS91a] US40 - Domain-Specific Environment Repository Com-
posite Paradigm Report, STARS-SC-03068/001/00, 30
May 91.

[STARS91b] US40 - Risk-Reduction Reasoning-Based Development
Paradigm Tailored to Navy C2 Systems, STARS-SC-
03070/001/00, 30 Jul 91.

Paqe A-53

SrARS-VC-Bo03/001v00 29 Janmy 1994

[STARS92a] STARS Reuse Concepts, Volume 1, Conceptual Frame-
work for Reuse Processes (CFRP), Version 2, STARS-

UC-05159/001/00, 13 Nov 92.

[STARS92b] Abridged AdaKNET User's Manual, Software Tech-
nology for Adaptable, Reliable Systems (STARS), Draft
Version 3.1. 6 May 92.

[STARS92c] STARS Reuse Concepts, Volume 1, Conceptual Frame-
work for Reuse Processes (CFRP), Version 1, STARS-

TC-04040/001/00, 14 Feb 92.

[TOMA91] Software Engineering Education, SEI Conference 1991,

J. Tomayko, Springer-Verlag, Oct 91.

[TRACZ92] Domain-Specific Software Architecture Engineering

Process Guidelines, ADAGE-IBM-92-02, Version 1.0,
17 Mar 92.

[WAL92] CARDS: A Blueprint and Environment for Domain-
Specific Software Reuse, Central Archive for Reusable
Defense Software (CARDS), STARS 92, On The Road
to Megaprogramming, Vol. 2, K. Wallnau, 8 Dec 92.

[WART92] Criteria for Comparing Reuse-Oriented Domain Analy-

sis Approaches, Software Productivity Consortium, S.

Wartik. R. Prieto-Diaz, 1991.

[YOUR92] Decline and Fall of the American Programmer, Yourdon
Press, E. Yourdon, 92.

Pap A-54

STARS-VC-BO03/001/00 29 Janmay 1994

APPENDIX B - Introduction to Reuse

B.1 INTRODUCTION

B.1.1 PURPOSE

This course has been developed to provide an introduction to the concepts associated with
software reuse. It explains what software reuse is, the processes used to accomplish reuse, and
potential benefits and risks. This course is intended for use in Government and industry training.
It can be tailored for presentation at the university level.

B.1.2 CARDS PROGRAM MISSION

The Central Archive for Reusable Defense Software (CARDS) Program is a concerted
Department of Defense (DoD) effort to transition advances in the techniques and technology of
library-centered, domain-specific software reuse into mainstream DoD software procurements.
There are three key elements to the CARDS approach:

1. Apply domain-specific reuse techniques and technology to produce an operational
library for command centers

2. Develop and transition, through a Franchise Plan, the "knowledge" for domain-
specific reuse to the DoD and DoD Software Development Industry

3. Develop and transition a training plan and training courses as a vehicle for
enhancing the acceptance of the Franchise Plan.

4. The domain-specific reuse knowledge gained during the CARDS effort will be
conveyed via a Franchise Plan and three sets of documents: Reuse Adoption Hand-
books, CARDS library operation and maintenance related documents, and training
and educational material.

B.1.3 RELATIONSHIP TO OTHER CARDS DOCUMENTS

The Franchise Plan provides a description of reuse processes and instructions for tailoring
development processes to effect domain-specific reuse. It describes, in precise steps, a scenario
for an organization to establish a domain-specific reuse capability.

The Reuse Adoption Handbooks consist of the Component and Tool Developer's, Acquisition,
Direction Level, and Engineer's Handbooks. Together these four handbooks address software de-
velopment, program management, and executive planning. The Component and Tool Developer's
Handbook addresses the development of reusable software components, emphasizing evaluation

Pop B-1

STARS-VC-BO03/001/00 29 Jamuky 1994

and acceptance criteria required by libraries and users of the components [CARDS93b]. The
Acquisition Handbook assists Government Program Managers and their support staff in incorpo-
rating software reuse into the acquisition and maintenance portions of the life-cycle process. The
Acquisition Handbook provides guidance in planning the acquisition strategy, contract award,
managing the effort, and follow-on support [CARDS93c]. The Direction Level Handbook of-
fers a framework to assist Government acquisition executives in establishing plans to manage
software reuse across their systems. Importance is placed on the policy and business issueb
(e.g., regulations, incentives, funding, cost/benefit, education and training, and ownership of
components) that act as the support structure for reuse [CARDS92a]. The Engineer's Handbook
assists software engineers and other technical personnel in integrating software reuse develop-
ment methods and techniques into their own software engineering processes. The focus of the
Engineer's Handbook is on how reuse impacts each activity of the software development process,
from requirements analysis through maintenance [CARDS93a].

Although some of the CARDS library operation and maintenance documents are specific to the
CARDS library, they can be used by other organizations to learn how reuse was implemented
in the command and control domain. These CARDS documents address the library's operations
procedures, the technical concepts, project management plans, as well as describing the domain
model.

The CARDS training effort includes a training plan, course outlines, and sample course materials
relating to topics included in each Reuse Adoption Handbook. They are geared to educate the
software professional and support the reduction of cultural barriers to reuse. They can be tailored
to meet the needs of varying audiences. This course has been developed as a means of introducing
the concepts of software reuse.

B.1.4 DOCUMENT ORGANIZATION

The course description begins by providing the reader with a description of the intended course
audience. Section 2 characterizes the student, Section 3 provides the reader with a guideline
for selecting an instructor to present the course. Section 4 provides a course overview. Course
content for each of the units is described in detail in Section 5.

Included with this course description is a sample set of course materials. The materials can be
used as they are, or modified to suit the needs of the presenting organization.

B.2 STUDENT

B.2.1 STUDENT CHARACTERIZATION

This course is intended for experienced system and software engineers.

B.2.1.1 System Engineers

System engineers are concerned with the decomposition of systems, the allocation of software
development responsibility for specific system components to software engineers, and with the

Pape B-2

STARS-VC-B003/001j00 29 Januay 1994

subsequent composition of software and hardware system components to produce the final system
[TOMA91].

System engineers begin with customer-defined goals, requirements and constraints and derive a
representation of function, performance, interfaces design constraints, and information structure
that can be allocated to each of the generic system elements [PRES87].

B.2.1.2 Software Engineer

To accommodate function and performance, defined during system engineering, software
engineers must build or acquire a set of software components [PRES87]. The software engineer
is responsible for analyzing software requirements, developing or identifying existing software
designs and software components, and integrating, testing, and maintaining software components.

B.2.2 STUDENT PREREQUISITE KNOWLEDGE

Successful completion of this course requires that the student possess prior experience
participating in a complex software development project (e.g., at least 100K Source Lines of
Code).

B.3 INSTRUCTOR

B.3.1 JOB DESCRIPTION

The instructor is responsible for conducting a tailored implementation of the recommended course
content through a lecture/activity format. This is accomplished by completing the following tasks:

1 Consuiting the reference documents,

2. Reviewing the recommended outline of course content and choosing appropriate

levels of content based on audiere and time,

3. Preparing appropriate training miRterials,

4. Setting up activities,

5. Ensuring the atmosphere of the training session is informal, relaxing, intellectually
stimulating, and student-centered,

6. Integrating lecture and discussion into the training session,

7. Conducting the training session.

Pe B-3

STARS-VC-B003/001/00 29 Jamny 1994

B.3.2 FORMAL EDUCATION

The instructor should hold at least a BS degree in software/system engineering (an MS degree
is preferred) or a degree in computer science or a closely related field.

B.3.3 KNOWLEDGE OF INSTRUCTION

The instructor should possess an understanding of the principles of learning and teaching
methodologies, an ability to apply these principles and methods, and excellent communication
skills.

B.3.4 PRACTICAL TEACHING EXPERIENCE

The instructor should have at least two years experience teaching short courses, and should
possess experience addressing system and software engineering personnel.

B.3.5 KNOWLEDGE OF SUBJECT

The instructor must be knowledgeable in software reuse and understand the impact of integrating
software reuse into system and software engineering processes. The instructor must have
completed formal training in the form of a workshop or seminar on domain-specific software
reuse. For presentation of the course to DoD personnel, the instructor should also have knowledge
of general DoD engineering and procurement standards as well as the various DoD mandates
effecting system development and maintenance.

B.3.6 SKILL IN PERFORMANCE

The instructor should be able to demonstrate the ability to perform the tasks required in the
practical application of the training course.

B.4 COURSE OVERVIEW

B.4.1 COURSE BREAKDOWN

The content for this course is broken into five units. These units can be presented in dependently
or contiguously. Students should attend units in the order described; however, units can be
skipped if students possess the knowledge to be presented. The units comprising this course are
as follows:

Unit 1: Introduction and Rationale Anticipated Duration: 2 hours

Pape B-4

STARS-VC-B003l001/00 29 Jauary 1994

An introduction to the DoD Software Reuse Vision and Strategy [DOD92] is provided. An
overview of the CARDS Program is presented and DoD reuse coordination efforts are discussed.

If the presenting organization is not CARDS, an appropriate introduction should replace this
unit. It is recommended that the introduction include an overview of the presenting organization
and its rationale for teaching domain-specific reuse.

Unit 2: Software Reuse Concepts Anticipated Duration: 2 hours

An overview of software reuse is presented. This unit addresses why reuse should be considered
and how long reuse has been practiced. Reusable components are defined. Differences in reuse
approaches are discussed (e.g., ad hoc, opportunistic, systematic, large scale reuse, small scale
reuse). Finally, potential risks and benefits associated with reuse are presented.

Unit 3: Domain-Specific Reuse Anticipated Duration: 2 hours

A brief history of domain-specific reuse begins this unit. An overview of domain engineering
is provided and the products of domain engineering are discussed. Application engineering
within the domain-specific reuse framework is introduced and explored. Students learn how
domain engineering products are incorporated into every software development activity from
requirements analysis through maintenance.

Unit 4: Software Reuse Libraries Anticipated Duration: 2 hours

An overview of component-based and model-based libraries is provided. Students are introduced
to various types of library representations and mechanisms, and certification and qualification
of library components. The intent of this unit is to build trust in the students for reusable
components.

B.5 ANNOTATED COURSE OUTLINE

B.5.1 UNIT 1 - INTRODUCTION AND RATIONALE

B.5.1.1 Learning Objectives

This introduction has been developed for presentation of the course by CARDS. Since CARDS
is a concerted DoD effort, it is necessary for students to understand the software reuse goals
of the DoD. The objectives of this lecture are to provile students with an understanding of the
DoD Software Reuse Vision and Strategy document, the CARDS Program goals and products,
and the role of CARDS in the DoD's current reuse efforts. If this course is being presented
by an organization other than CARDS, this unit can be replaced in its entirety, or the CARDS
overvir-,. may be removed and replaced with an overview of the presenting organization.

B.5.1.2 Lecture Content Area

A. DoD Software Reuse Vision and Strategy Overview

Paq B-5

STARS-VC-BO03/001/00 29 Jamuary 1994

The DoD Software Reuse Vision and Strategy [DOD92] describes an initiative
which will make a reuse-based paradigm the preferred alternative for developing
and supporting software. Students will learn what this document is and how it
may effect the way they currently practice software development.

B. CARDS Overview [WAL92]

The Central Archive for Reusable Defense Software (CARDS) Program is a

concerted Department of Defense (DoD) effort to transition advances in the
techniques and technology of architecture-based, library-assisted, domain-specific
software reuse into mainstream DoD software procurements. Students will learn
what the goals of the CARDS Program are, what activities CARDS is involved
in, and what products and services CARDS has to offer the DoD soft ware
community. This is intended to be a brief overview. Students will be directed to
specific documents for additional information.

C. Interoperability Coordination Among DoD Reuse Efforts

CARDS is not a program in isolation, but one of several related reuse initiatives.
Students will be provided with an overview of several of the major DoD domain-
specific operational reuse library efforts and how they are coordinating to achieve
interoperability. Students will learn about the Reuse Library Interoperability
Group (RIG) and why CARDS is a participating member. Students will gain
an understanding of how CARDS, the STARS Asset Source for Software
Engineering Technology (ASSET), and the Defense Information Systems Agency
(DISA) Center for Information Management (CIM) Defense Software Repository
System (DSRS) are coordinating.

B.5.2 UNIT 2 - SOFTWARE REUSE CONCEPTS

B.5.2.1 Learning Objectives

The objectives of this lecture are to provide the students with an understanding of software reuse
and an appreciation of the potential benefits of reuse.

B.5.2.2 Lecture Content Area

Software reuse is the reapplication of domain knowledge, development experience, design
decisions, architectural structures, requirements, designs, code, and documentation from existing
systems to an emerging system in an effort to reduce the costs associated with software
development and maintenance [BIGG89]. Cost includes manpower (skills and availability),
risks to the schedule, and software and hardware budgets.

Pap B-6

SrARS-VC-B00/01/00 29 Jaumy 1994

B.5.3 UNIT 3 - DOMAIN-SPECIFIC REUSE

B.5.3.1 Learning Objectives

The objectives of this lecture are to provide the students with an understanding of domain-
specific reuse. Students will learn about domain engineering, the activities it encompasses, and
the products that result. They will learn how the process of application engineering is performed
using the products of domain engineering.

B.5.3.2 Lecture Content Area

Domain-specific reuse, which utilizes a generic architecture, is a key aspect of the DoD Software
Reuse Vision and Strategy. It is believed that domain-specific reuse can result in greater savings
than general-purpose reuse [DOD92]. A domain is an area of activity or knowledge containing
applications which share a set of common capabilities and data. Domains can be defined as
vertical or horizontal. A vertical domain is a specific class of system, such as command and
control or weapon systems. A horizontal domain consists of general software functions that are
applicable across multiple vertical domains, such as user interfaces, mathematical programs, and
graphics packages [CARDS93c]. As a domain matures, so matures the body of knowledge about
it and experience in it. A mature domain has a larger number of existing systems and domain
experts from which information can be drawn. Components which have been maintained and
refined as the domain matures will become more reliable and effective.

B.5.4 UNIT 4 - SOFTWARE REUSE LIBRARIES

B.5.4.1 Learning Objectives

The objectives of this lecture are to introduce the students to reuse libraries, library mechanisms,
and certification and qualification techniques. Students will receive hands-on experience using
a reuse library.

B.M.4.2 Lecture Content Area

A. The Library - A Reuse Tool

Software reuse libraries are a tool for reuse; they are not the reuse solution. The
instructor will discuss how most individuals maintain their own pool of reusable
components and how compilers are equipped with their own set of reusable
libraries. The students will gain an understanding of how the software reuse
library concept is now being extended to include publicly accessible libraries of
life-cycle artifacts. This extension is essential if the full potential of software
reuse is to be realized. The greatest reuse savings can be seen when a component
is reused many times, across projects. organizations may benefit by making their
own components available internally to all projects and by acquiring components
available externally [NATO].

Page B-7

SrARS-VC-B003=001/00 29 Jawaay 1994

B. Types of Libraries

Reuse libraries can be classified by the methods and techniques used to organize
components. A library is either component-based or model-based [WAL92]. Stu-
dents will learn how libraries of these two classes are similar and how they differ.

B.6 HANDOUT - COURSE EVALUATION FORM

Please complete the following course evaluation form.

1. Name (Optional):

2. Organization (Optional):

3. 1 perform the following tasks as part of my job responsibilities (circle all that apply):

Specify systems/software

Design systems/software

Develop systems/software

Test systems/software

Verify systems/software

Control systems/software

Manage systems/software

Other__

4. I will be able to apply the course content to my job duties (Y/N).

5. Before I attended this course, I was familiar with:

Table 5-1

Novice Knowledgable E ienced Expert

Sructumred Analysis

Model-Based Eineaing
Domain Analysis

Software Reuse Libraries

Domain-Specific Software Reuse Libraries

Generic Arwhtecre Develormen_

Pae B-8

STARS-VC-B0000/001J0 29 Jumary 1994

System Enguleenng

Software Enneering

6. The length of this class was:

Too Long

Too Short

Just Right

7. The material covereo was:

Too Specific

Too General

Adequate

8. The time given for each unit was adequate: (Y/N)

If no, indicate which units did not provide adequate time.

9. 1 had plenty of opportunity to participate and ask questions: (Y/N)

10. Were your questions adequately answered? (Y/N)

11. The examples helped clarify the concepts:

Very Much

Moderately

Not at All

12. The course handouts were:

Very Useful

Moderately Useful

Not Useful

13. I would recommend attendance to my colleagues: (Y/N)

If no, why not?

14. I have attended other software reuse training classes or seminars: (Y/N)

If yes, which ones?

Pape B-9

STARS-VC-BO0l3001/00 29 Jmnary 1994

15. I would be interested in attending other software reuse training seminars: (Y/N)

16. I would be interested in receiving additional information on software reuse: (Y/N)

17. I believe domain-specific software reuse is very valuable in the development of

software systems: (Y/N)

18. The training facilities and equipment were adequate: (Y/N)

19. The instructor's knowledge of course material was:

Poor

Fair

Good

Excellent

20. The instructor's ability to explain the course material was:

Poor

Fair

Good

Excellent

21. The instructor's preparation of course material was:

Poor

Fair

Good

Excellent

22. Additional Comments:

B.7 HANDOUT - GLOSSARY

Ad-Hoc Reuse -

Reuse is practiced ad-hoc when there are no defined methods for performing reuse.

Application -

A system which provides a set of general services for solving some type of user

problem.

Pae B-1O

STARS-VC-B003./0I,00 29 miary 1994

Architectural Constraints -

The definition of relationships/interfaces among components of a generic archi-
tecture.

Architecture-Centric Reuse -

Reuse is architecture-centric when the component development process and the
application development processes are based on a generic architecture. The goal
of an architecture-driven process is to achieve black-box reuse.

Black-box Reuse -

Black-box reuse is achieved when application engineers can compose systems
by plugging together different reusable components based on an application's
requirements.

Certification -

The process of determining that a component being considered for inclusion in
the library meets the requirements of the library and passes all testing procedures.

Common Metrics -

Criteria used to evaluate components regardless of domain. Example criteria for
common metrics are reliability, maintainability, portability, and security.

Component-Based Library -

Component-based libraries are similar to book libraries. They can be thought of
as software warehouses. The central focus of a component-based library is the
component.

Domain -

The functional area covered by a family of systems (e.g., the aircraft navigation
systemdomain) or across systems where similar software requirements exist.

Domain Analysis -

The process of identifying, collecting, organizing, analyzing, and representing
the relevant information in a domain based on the study of existing systems and
their development histories, knowledge captured from domain experts, underlying
theory, and emerging technology within the domain.

Domain Engineering -

An encompassing process which includes domain analysis and the subsequent
construction of components, methods, tools, and supporting documentation that

PB-11

STrAR-VC-BO03/001)j 0 29 Jmary 1994

address the problems of system/subsystem development through the application
of the knowledge in the domain model and software architecture.

Domain Metrics -

Criteria used to evaluate components based on domain requirements, architectural
constraints, and implementation constraints.

Domain Model -

A definition of the functions, objects, data, and relationships in a domain,
consisting of a concise representation of the commonalities and differences of
the problems of the domain and their solutions.

Domain-Specific Reuse -

Reuse that is targeted for a specific domain (as opposed to reuse of general purpose
work products). It typically involves reuse of larger workproducts (subsystems,
architectures, etc.) than general purpose reuse.

Domain-Specific Software Architecture -

A software architecture that has been generalized based on actual and projected
commonalities of systems in a domain. May also be referred to as a generic
architecture.

Facet -

A perspective, viewpoint, or dimension of a particular domain which can be
represented as a class.

Generic Architecture -

High-level paradigms and constraints that characterize the commonality and
variances of the interactions and relationships between the various components in
a system. May also be referred to as a domain specific software architecture.

Horizontal Domain -

The knowledge and concepts that pertain to a particular functionality of a set of
software components that can be utilized across more than one application.

Implementation Constraints -

Constraints to be satisfied when components of a generic architecture are
composed into specific systems.

Interoperability -

Pqae B-12

SrARS-VC-BO03001/00 29 Jaumy 1994

The ability of two or more systems to exchange information and to mutually use
the information that has been exchanged.

Knowledge Blueprint -

A flexible plan to transition knowledge to the community.

Large Scale Reuse -

Large scale reuse is the reapplication of high-level components (e.g., requirements,
architectures, designs).

Library-Assisted Reuse -

Reuse is library-assisted when there exists a library to support the application
domain. There may be more than one library and they may be interconnected.

Megaprogramming -

Megaprogramming is achieved when systems and subsystems can be viewed as
black-boxes that meet certain requirements. These systems can be reused in
building other systems without the developer requiring detailed knowledge of the
system's internal structures.

Model-Based Library -

Model-based libraries are organized around the principle that what matters in a
repository is the context in which reusable software components are used and the
relationships among components. The focus of a model-based library is the model
(requirements, architectures, design decisions and rationales) and the software
which implements these models.

Opportunistic Reuse -

Reuse is practiced opportunistically when it is up to software developers to identify
when reuse is possible, locate reusable components, and integrate them.

Process-Driven Reuse-

Software reuse is process-driven when it is an integral and transparent part of
both the software engineering process and the broader acquisition process.

Prototype -

A model of a system (sometimes scaled down, but accurate) used to verify the
operational process prior to building a final system.

Qualification -

Pap B-13

STARS-VC-BOO3jV01/0) 29 Jmiwy 1994

The process of determining that a potential component is appropriate to the library
and meets all quality requirements.

Reusable Components -

A representation of some aspect of a system which may be used in different
applications. A component may consist of requirements, architectures, designs or
implementation (e.g., code, tests, documentation) information.

Reuse Library -

A library specifically designed, built, and maintained to house reusable compo-
nents.

Small Scale Reuse -

Small scale reuse is the reapplication of code: subroutines, object libraries, or
Ada packages.

Software Architecture -

A specification for the assemblage of components.

Systematic Reuse -

Reuse is practiced systematically when there exist defined procedures for
leveraging future software projects. Efforts are devoted up-front to creating a
suitable process.

Vertical Domain -

The knowledge and concepts that pertain to a particular application domain.

Wrapper -

A component which allows integration of components. A wrapper is used when
some capabilities required of the component are not provided by the product or
when the product's interface does not completely match that of the component.

B.8 HANDOUT - ACRONYMS

AJPO Ada Joint Program Office

ASSET Asset Source for Software Engineering Technology

BS Bachelor of Science

CAMP Common Ada Missile Packages

Pap B-14

STARS-VC-BO03,01A0 29 Jiauy 1994

CARDS Central Archive for Reusable Defense Software

CIM Center for Information Management

COTS Commercial-Off-The-Shelf

DISA Defense Information Systems Agency

DoD Department of Defense

DSRS Defense Software Repository System

DSSA Domain Specific Software Architecture

FODA Feature-Oriented Domain Analysis

GOTS Government-Off-The-Shelf

MS Master of Science

NEC Nippon Electronics Corporation

NTTC National Technology Transfer Center

PRISM Portable, Reusable, Integrated Software Modules

RAPID Reusable Ada Packages for Information System Devel-

opment

RFP Request For Proposal

RIG Reuse library Interoperability Group

RLF Reusability Library Framework

RNTDS Restructured Naval Tactical Data Systems

SDESS Software Development for Electronic Switching Systems

STARS Software Technology for Adaptable, Reliable Systems

B.9 HANDOUT - BIBLIOGRAPHY

[ANTHES92] U.S. Software Reuse Plan Draws Criticism, Computer

World, G. Anthes, Aug 92.

[ARMY92] ARMY Reuse Plan, 31 Aug 92.

[ASSE 91] ASSET Set-Up Plans, Software Technology for Adapt-

able, Reliable, Systems (STARS) Program, 9 Mar 91.

Psp B-15

STARS-VC-BO03/001/00 29 imJary 1994

[ASSET92] Criteria and Implementation Procedures for Evaluation
of Reusable Software Engineering Assets, ASSET, The
National Software Technology Repository, IBM, Mar

92.

[BIGG89I Software Reusability, Volume 1, Concepts and Models,
ACM Press, T. J. Biggerstaff, A. J. Perlis, 89.

[BOEHM81] Software Engineering Economics, Prentice Hall, B.

Boehm, 81.

[BOEHM92] Megaprogramming (preliminary version), STARS 92, On

The Road to Megaprogramming, SEE, Vol. 3, DARPA,
B. Boehm, W. Scherlis, 92.

[CARDS92a] Direction Level Handbook, Central Archive for Reusable
Defense Software (CARDS), STARS-AC-04104/001/00,

20 Nov 92.

[CARDS92b] Library Operations Policies and Procedures, Central

Archive for Reusable Defense Software (CARDS),
STARS-AC-4109/001/00, 25 Nov 92.

[CARDS92c] Command Center Domain Model Description, Central

Archive for Reusable Defense Software (CARDS),
STARS-AC-04110/001/00, 25 November 92.

[CARDS92d] Library Development Handbook (LDH), Central Archive
for Reusable Defense Software (CARDS), STARS-AC-

04109/001/00, 25 November 92.

[CARDS93a] Engineer's Handbook, Central Archive for Reusable

Defense Software (CARDS), STARS-VC-BO08/001/00,
30 September 93.

[CARDS93b] Component and Tool Developer's Handbook, Central

Archive for Reusable Defense Software (CARDS),

STARS-AC-04114/001/00, 15 Mar 93.

[CARDS93c] Acquisition Handbook, Central Archive for Reusable

Defense Software (CARDS), STARS-AC-04105/001/00,

30 Apr 93.

[CARDS94a] Technical Concept Document, Central Archive for

Reusable Defense Software (CARDS), STARS-VC-

B009/001/00, 28 Feb 94.

Pape B-16

"rARS-VC-B003/i01.WC 29 iamay 1994

[CARDS94b] Training Plan, Central Archive for Reusable Defense
Software (CARDS), STARS-VC-B003/001/00, 29 Jan
94.

[COHEN92] Modeling Software Reuse Technology: Feature Ori-
ented Domain Analysis (FODA) - Tutorial Slides, SEI,
Carnegie Mellon University, May 92.

[DISA92a] Software Reuse Initiative Program Overview, DoD
Reuse Initiative, Defense Information Systems Agency
(DISA)/Center for Information Management (CIM),
Presented by SofTech, Inc., 2 Nov 92.

[DISA92b] DoD Domain Analysis Guidelines, DoD Software
Reuse Initiative, Defense Information Systems Agency
(DISA)/Center for Information Management (CIM),
May 92.

[DISA92c] Department of Defense, Center for Software Reuse
Operations, Training Plan, 27 Jul 92.

[DoD92] DoD Software Reuse Vision and Strategy, CrossTalk, Oct
92.

[FRAKES90] Representing Reusable Software, Information and Soft-
ware Technology, Vol. 32, No. 10, W. B. Frakes, P. B.
Gandel, 10 Dec 90.

[FRAKES92] Software Reuse, Domain Analysis, and Reengineering,
W. Frakes, R. Prieto-Diaz, R. Arnold, 92.

[GOOD92] Restructured Naval Tactical Data System (RNTDS) An
Example of Applying Megaprogramming Concepts, Stars
92, T. J. Goodall, 8 Dec 92.

[HAYH92] Com'ponent Identification & Qualification, Central
Archive for Reusable Defense Software (CARDS), B.
Hayhurst, B. Curfman, 21 Oct 92.

[HESS92] Army Software Reuse Plan, Status Review, J. Hess, 5
Aug 92.

[HISS92] Domain-Specific Reuse for Post-Deployment Mainte-
nance, Central Archive for Reusable Defense Software
(CARDS), S. Hissam, 92.

[HOOP89] Software Reuse Guidelines, U.S. Army Institute for
Research, J. W. Hooper, R. 0. Chester, ASQB-GI-90-
015, Dec 89.

Pape B-17

SrARS-VC-BO03/001/00 29 Jmuaiy 1994

[LEVIN92] Reusable Software Components, CrossTalk, T. Levin,
Mar 92.

[MITRE92] A New Process for Acquiring Software Architecture,
The MITRE Corporation, T. F. Saunders, Dr. B. M.
Horowitz, M. L. Mleziva, M920000126, Nov 92.

[NATO] Software Reuse Procedures, NATO Communications and
Information Agency, Vol. 3 of 3.

[PAYTON92] Domain-Specific Reuse, Context, Accomplishments and
Directions, STARS 92, On the Road to Megayrogram-
ming, Vol. 2, 8 Dec 92.

[PRIETO90] Domain Analysis: An Introduction, ACM SigSoft, Soft-
ware Engineering Notes, R. Prieto-Diaz, Vol. 15, No. 2.
Apr 90.

[PRIETO91a] Making Software Reuse Work: An Implementation
Model, First International Workshop on Software
Reusability, R. Prieto-Diaz, 5-6 Jul 91.

[PRIETO91b] Implementing Faceted Classification for Software Reuse,
Communications of the ACM, Vol. 34, No. 5, R. Prieto-
Diaz, May 91.

[PRISM92] Qualification Methodology Report, Portable Reusable,
Integrated Software Modules (PRISM) Program, 14 Jul
92.

[RAPID91] RAPID Qualifying Software Components: Reusability
Metrics, Software Reuse and Re-Engineering Conference
for the National Institute for Software Quality and
Productivity, A. Nieder, 30 Apr 91.

[SPC92] Reuse Adoption Guidebook, Software Productivity Con-
sortium, SPC-92051-CMC, Version 01.00.03, Nov 92.

[STARS92a] STARS Reuse Concepts, Volume 1, Conceptual Frame-
work for Reuse Processes (CFRP), Version 2, STARS-
UC-05159/001/00, 13 Nov 92.

[STARS92b] Abridged AdaKNET User's Manual, Software Tech-
nology for Adaptable, Reliable Systems (STARS), Draft
Version 3.1, 6 May 92.

[STARS92c] STARS Reuse Concepts, Volume 1, Conceptual Frame-
work for Reuse Processes (CFRP), Version 1, STARS-
TC-04040/001/00, 14 Feb 92.

Pape B-18

STARS-VC-BO03/001/0 29 Jammy 1994

[STARS92d] RLF Graphical Browser User's Manual, Software
Technology for Adaptable, Reliable Systems (STARS),
STARS-TC-04046/005/00, 1 Jul 92.

[TRACZ92] Domain-Specific Software Architecture Engineering
Process Guidelines, ADAGE-IBM-92-02, Version 1.0,
17 Mar 92.

[WAL92] CARDS: A Blueprint and Environment for Domain-
Specific Software Reuse, Central Archive for Reusable
Defense Software (CARDS), STARS 92, On The Road
to Megaprogramming, Vol. 2, K. Wallnau, 8 Dec 92.

[WART92] Criteria for Comparing Rtuse-Oriented Domain Analy-
sis Approaches, Software Productivity Consortium, S.
Wartik, R. Prieto-Diaz, 1991.

[YOUR92] Decline and Fall of the American Programmer, Yourdon
Press, E. Yourdon, 92.

Pap B-19

